
Web Appendix to
Binary Payment Schemes: Moral Hazard and Loss Aversion

By Fabian Herweg, Daniel Müller, and Philipp Weinschenk

This appendix consists of three parts. Part B contains the proofs of Proposition 1 and
the results of Section IV. In part C, we prove the validity of the first-order approach. In
part D, the general case of risk and loss aversion is analyzed.

B. Additional Proofs of Propositions

PROOF OF PROPOSITION 1:
It is readily verified that Assumptions 1-3 from Grossman and Hart (1983) are satisfied.

Thus, the cost-minimization problem is well defined, in the sense that for each action
a ∈ (0, 1) there exists a second-best incentive scheme. Suppose the principal wants to
implement action â ∈ (0, 1) at minimum cost. Since the agent’s action is not observable,
the principal’s problem is given by

min
(us)Ss=1

S∑
s=1

γs(â)h(us)(MR)

subject to

S∑
s=1

γs(â)us − c(â) ≥ ū ,(IRR)

S∑
s=1

(γHs − γLs )us − c′(â) = 0 .(ICR)

where the first constraint is the individual rationality constraint and the second is the
incentive compatibility constraint. Note that the first-order approach is valid, since the
agent’s expected utility is a strictly concave function of his effort. The Lagrangian to the
resulting problem is

L =

S∑
s=1

γs(a)h(us)− µ0

{
S∑
s=1

γs(a)us − c(a)− ū

}
− µ1

{
S∑
s=1

(γHs − γLs )us − c′(a)

}
,

where µ0 and µ1 denote the Lagrange multipliers of the individual rationality constraint
and the incentive compatibility constraint, respectively. Setting the partial derivative of
L with respect to us equal to zero yields

∂L
∂us

= 0 ⇐⇒ h′(us) = µ0 + µ1

γHs − γLs
γs(â)

, ∀s ∈ S.(B.1)

Irrespective of the value of µ0, if µ1 > 0, convexity of h(·) implies that us > us′ if and only
if (γHs − γLs )/γs(â) > (γHs′ − γLs′)/γs′(â), which in turn is equivalent to γHs /γ

L
s > γHs′ /γ

L
s′ .

Thus it remains to show that µ1 is strictly positive. Suppose, in contradiction, that
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µ1 ≤ 0. Consider the case µ1 = 0 first. From (A.1) it follows that us = uf for all s ∈ S,
where uf satisfies h′(uf ) = µ0. This, however, violates (ICR), a contradiction. Next,
consider µ1 < 0. From (A.1) it follows that us < us′ if and only if (γHs −γLs )/γs(â) > (γHs′−
γLs′)/γs′(â). Let S+ ≡

{
s|γHs − γLs > 0

}
, S− ≡

{
s|γHs − γLs < 0

}
, and û ≡ min{us|s ∈

S−}. Since û > us for all s ∈ S+, we have

S∑
s=1

(γHs − γLs )us =
∑
s∈S−

(γHs − γLs )us +
∑
s∈S+

(γHs − γLs )us

<
∑
s∈S−

(γHs − γLs )û+
∑
s∈S+

(γHs − γLs )û

= û

S∑
s=1

(γHs − γLs )

= 0,

again a contradiction to (ICR). Hence, µ1 > 0 and the desired result follows.

PROOF OF PROPOSITION 6:
First consider b ≥ 0. We divide the analysis for b ≥ 0 into three subcases.

Case 1 (a0 < 0): For the effort level â to be chosen by the agent, this effort level has
to satisfy the following incentive compatibility constraint:

(IC) â ∈ arg max
a∈[0,1]

u+ γ(a)b− γ(a)(1− γ(a))b(λ− 1)− k

2
a2.

For â to be a zero of dEU(a)/da, the bonus has to be chosen according to

b∗(â) =
kâ

(γH − γL) [2− λ+ 2γ(â)(λ− 1)]
.

Since a0 < 0, b∗(a) is a strictly increasing and strictly concave function with b∗(0) = 0.
Hence, each â ∈ [0, 1] can be made a zero of dEU(a)/da with a nonnegative bonus.
By choosing the bonus according to b∗(â), â satisfies, by construction, the first-order
condition. Inserting b∗(â) into d2EU(a)/da2 shows that expected utility is strictly concave
function if a0 < 0. Hence, with the bonus set equal to b∗(â), effort level â satisfies the
second-order condition for optimality and therefore is incentive compatible.

Case 2 (a0 = 0): Just like in the case where a0 < 0, each effort level a ∈ [0, 1] turns
out to be implementable with a nonnegative bonus. To see this, consider bonus

b0 =
k

2(γH − γL)2(λ− 1)
.

For b < b0, dEU(a)/da < 0 for each a > 0, that is, lowering effort increases expected
utility. Hence, the agent wants to choose an effort level as low as possible and therefore
exerts no effort at all. If, on the other hand, b > b0, then dEU(a)/da > 0. Now,
increasing effort increases expected utility, and the agent wants to choose effort as high
as possible. For b = b0, expected utility is constant over all a ∈ [0, 1], that is, as long
as his participation constraint is satisfied, the agent is indifferent which effort level to
choose. As a tie-breaking rule we assume that, if indifferent between several effort levels,
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the agent chooses the effort level that the principal prefers.

Case 3 (a0 > 0): If a0 > 0, the agent either chooses a = 0 or a = 1. To see this, again
consider bonus b0. For b ≤ b0, dEU(a)/da < 0 for each a > 0. Hence, the agent wants
to exert as little effort as possible and chooses a = 0. If, on the other hand, b > b0, then
d2EU(a)/da2 > 0, that is, expected utility is a strictly convex function of effort. In order
to maximize expected utility, the agent will choose either a = 0 or a = 1 depending on
whether EU(0) exceeds EU(1) or not.

Negative Bonus: b < 0
Let b− < 0 denote the monetary punishment that the agent receives if the good signal is
observed. With a negative bonus, the agent’s expected utility is

(B.2) EU(a) = u+ γ(a)b− + γ(a)(1− γ(a))λb− + (1− γ(a))γ(a)(−b−)− k

2
a2.

The first derivative with respect to effort,

dEU(a)

da
= (γH − γL)b− [λ− 2γ(a)(λ− 1)]︸ ︷︷ ︸

MB−(a)

− ka︸︷︷︸
MC(a)

,

reveals that MB−(a) is a positively sloped function, which is steeper the harsher the
punishment is, that is, the more negative b− is. It is worthwhile to point out that if
bonus and punishment are equal in absolute value, |b−| = b, then also the slopes of
MB−(a) and MB(a) are identical. The intercept of MB−(a) with the horizontal axis,
a−0 again is completely determined by the model parameters:

a−0 =
λ− 2γL(λ− 1)

2(γH − γL)(λ− 1)
.

Note that a−0 > 0 for γL ≤ 1/2. For γL > 1/2 we have a−0 < 0 if and only if λ >
2γL/(2γL−1). Proceeding in exactly the same way as in the case of a nonnegative bonus
yields a familiar results: effort level â ∈ [0, 1] is implementable with a strictly negative
bonus if and only if a−0 ≤ 0. Finally, note that a0 < a−0 . Hence a negative bonus does
not improve the scope for implementation.

PROOF OF PROPOSITION 7:
Throughout the analysis we restricted attention to nonnegative bonus payment. It

remains to be shown that the principal cannot benefit from offering a negative bonus
payment: implementing action â with a negative bonus is at least as costly as implement-
ing action â with a positive bonus. In what follows, we make use of notation introduced
in the paper as well as in the proof of Proposition 6. Let a0(p), a−0 (p), b∗(p; â), and
u∗(p; â) denote the expressions obtained from a0, a−0 , b∗(â), and u∗(â), respectively, by
replacing γ(â), γL, and γH with γ(p, â), γL(p), and γH(p). From the proof of Proposition
6 we know that (i) action â is implementable with a nonnegative bonus (negative bonus)
if and only if a0(p) ≤ 0 (a−0 (p) ≤ 0), and (ii) a−0 (p) ≤ 0 implies a0(p) < 0. We will show
that, for a given value of p, if â is implementable with a negative bonus then it is less
costly to implement â with a nonnegative bonus.

Consider first the case where a−0 (p) < 0. The negative bonus payment satisfying
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incentive compatibility is given by

b−(p; â) =
kâ

(γH(p)− γL(p)) [λ− 2γ(p, â)(λ− 1)]
.

It is easy to verify that the required punishment to implement â is larger in absolute
value than than the respective nonnegative bonus which is needed to implement â, that
is, b∗(p; â) < |b−(p; â)| for all â ∈ (0, 1) and all p ∈ [0, 1). When punishing the agent with a
negative bonus b−(p; â), u−(p; â) will be chosen to satisfy the corresponding participation
constraint with equality, that is,

u−(p; â) = ū+
k

2
â2 − γ(p, â)b−(p; â) [λ− γ(p, â)(λ− 1)] .

Remember that, if â is implemented with a nonnegative bonus, we have

u∗(p; â) = ū+
k

2
â2 − γ(p, â)b∗(p; â) [2− λ+ γ(p, â)(λ− 1)] .

It follows immediately that the minimum cost of implementing â with a nonnegative
bonus is lower than the minimum implementation cost with a strictly negative bonus:

C−(p; â) = u−(p; â) + γ(p, â)b−(p; â)

= ū+
k

2
â2 − γ(p, â)b−(p; â) [λ− γ(p, â)(λ− 1)− 1]

> ū+
k

2
â2 + γ(p, â)b∗(p; â) [λ− γ(p, â)(λ− 1)− 1]

= ū+
k

2
â2 − γ(p, â)b∗(p; â) [1− λ+ γ(p, â)(λ− 1)]

= ū+
k

2
â2 − γ(p, â)b∗(p; â) [2− λ+ γ(p, â)(λ− 1)] + γ(p, â)b∗(p; â)

= u∗(p; â) + γ(p, â)b∗(p; â)

= C(p; â).

The same line of argument holds when a−0 = 0: the bonus which satisfies the (IC) is

b−0 (p; â) = − k

2(γH(p)− γL(p))2(λ− 1)
,

and so b∗(p; â) < |b−0 (p; â)| for all â ∈ (0, 1) and all p ∈ [0, 1).

PROOF OF COROLLARY 1:
Let p ∈ (0, 1). With ζ̂ being a convex combination of γ̂ and 1 we have (ζH , ζL) =

p(1, 1) + (1− p)(γH , γL) = (γH + p(1− γH), γL + p(1− γL)). The desired result follows
immediately from Proposition 7. Consider λ > 2. Implementation problems are less
likely to be encountered under ζ̂ than under γ̂. Moreover, if implementation problems
are not an issue under both performance measures, then implementation of a certain
action is less costly under ζ̂ than under γ̂. For λ = 2 implementation problems do not
arise and implementation costs are identical under both performance measures. Last, if
λ < 2, implementation problems are not an issue under either performance measure, but
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the cost of implementation is strictly lower under γ̂ than under ζ̂.

C. Validity of the First-Order Approach

LEMMA C.1: Suppose (A1)-(A3) hold, then the incentive constraint in the principal’s
cost minimization problem can be represented as EU ′(â) = 0.

PROOF:
Consider a contract (u1, (bs)

S
s=2) with bs ≥ 0 for s = 2, . . . , S. In what follows, we write

βs instead of βs(γ̂, λ, â) to cut back on notation. The proof proceeds in two steps. First,
for a given contract with the property bs > 0 only if βs > 0, we show that all actions that
satisfy the first-order condition of the agent’s utility maximization problem characterize
a local maximum of his utility function. Since the utility function is twice continuously
differentiable and all extreme points are local maxima, if there exists some action that
fulfills the first-order condition, this action corresponds to the unique maximum. In the
second step we show that under the optimal contract we cannot have bs > 0 if βs ≤ 0.

Step 1: The second derivative of the agent’s utility with respect to a is

EU ′′(a) = −2(λ− 1)

S∑
s=2

bsσs − c′′(a) ,(C.1)

where σs := (
∑s−1
i=1 (γHi − γLi ))(

∑S
i=s(γ

H
i − γLi )) < 0. Suppose action â satisfies the

first-order condition. Formally

S∑
s=2

bsβs = c′(â) ⇐⇒
S∑
s=2

bs
βs
â

=
c′(â)

â
.(C.2)

Action â locally maximizes the agent’s utility if

− 2(λ− 1)

S∑
s=2

bsσs < c′′(â) .(C.3)

Under Assumption (A3), we have c′′(â) > c′(â)/â. Therefore, if

S∑
s=2

bs
[
−2(λ− 1)σs − βs/â

]
< 0 ,(C.4)

then (C.2) implies (C.3), and each action â satisfying the first-order condition of the
agent’s maximization problem is a local maximum of his expected utility. Inequality
(C.4) obviously is satisfied if each element of the sum is negative. Summand s is negative
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if and only if

− 2(λ− 1)

(
s−1∑
i=1

(γHi − γLi )

)(
S∑
i=s

(γHi − γLi )

)
â

−

(
S∑
τ=s

(γHτ − γLτ )

)[
1− (λ− 1)

(
s−1∑
t=1

γt(â)

)]

+ (λ− 1)

[
S∑
τ=s

γτ (â)

](
s−1∑
t=1

(γHt − γLt )

)
< 0 .

Rearranging the above inequality yields(
S∑
i=s

(γHi − γLi )

){
λ+ 2(λ− 1)

[
â

s−1∑
i=1

(γHi − γLi )−
s−1∑
i=1

γi(â)

]}
> 0

⇐⇒

(
S∑
i=s

(γHi − γLi )

){
λ

(
1−

s−1∑
i=1

γLi

)
+ (2− λ)

s−1∑
i=1

γLi

}
> 0.(C.5)

The term in curly brackets is positive, since λ ≤ 2 and
∑s−1
i=1 γ

L
i < 1. Furthermore, note

that
∑S
i=s(γ

H
i − γLi ) > 0 since βs > 0 for all bs > 0. This completes the first step of the

proof.

Step 2: Consider a contract with bs > 0 and βs ≤ 0 for at least one signal s ∈ {2, . . . , S}
that implements â ∈ (0, 1). Then, under this contract, (IC′) is satisfied and there exists
at least one signal t with βt > 0 and bt > 0. Obviously, the principal can reduce both bs
and bt without violating (IC′). This reasoning goes through up to the point where (IC′)
is satisfied and bs = 0 for all signals s with βs ≤ 0. From the first step of the proof we
know that the resulting contract implements â incentive compatibly. Next, we show that
reducing any spread, say bk, always reduces the principal’s cost of implementation.

(C.6) C(b) =

S∑
s=1

γs(â)h

(
u1(b) +

s∑
t=2

bt

)
,

where

u1(b) = ū+ c(â)−
S∑
s=2

bs

[
S∑
τ=s

γτ (â)− (λ− 1)

(
S∑
τ=s

γτ (â)

)(
s−1∑
t=1

γt(â)

)]
.

The partial derivative of the cost function with respect to an arbitrary bk is

∂C(b)

∂bk
=

k−1∑
s=1

γs(â)h′

(
u1(b) +

s∑
t=2

bt

)[
∂u1

∂bk

]

+

S∑
s=k

γs(â)h′

(
u1(b) +

s∑
t=2

bt

)[
∂u1

∂bk
+ 1

]
.
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Rearranging yields

(C.7)
∂C(b)

∂bk
=

k−1∑
s=1

γs(â)h′(us)

[
(λ− 1)

(
S∑
τ=k

γτ (â)

)(
k−1∑
t=1

γt(â)

)
−

S∑
τ=k

γτ (â)

]
︸ ︷︷ ︸

<0

+

S∑
s=k

γs(â)h′(us)

[
(λ− 1)

(
S∑
τ=k

γτ (â)

)(
k−1∑
t=1

γt(â)

)
−

S∑
τ=k

γτ (â) + 1

]
︸ ︷︷ ︸

>0

.

Note us ≤ us+1 which implies that h′(us) ≤ h′(us+1). Thus, the following inequality
holds

(C.8)
∂C(b)

∂bk
≥
k−1∑
s=1

γs(â)h′(uk)

[
(λ− 1)

(
S∑
τ=k

γτ (â)

)(
k−1∑
t=1

γt(â)

)
−

S∑
τ=k

γτ (â)

]

+

S∑
s=k

γs(â)h′(uk)

[
(λ− 1)

(
S∑
τ=k

γτ (â)

)(
k−1∑
t=1

γt(â)

)
−

S∑
τ=k

γτ (â) + 1

]
.

The above inequality can be rewritten as follows

∂C(b)

∂bk
≥ h′(uk)

[
(λ− 1)

(
S∑
τ=k

γτ (â)

)(
k−1∑
t=1

γt(â)

)]
> 0 .

Since reducing any bonus lowers the principal’s cost of implementation, it cannot be
optimal to set bs > 0 for βs ≤ 0. This completes the second step of the proof. In
combination with Step 1, this establishes the desired result.

D. The General Case: Loss Aversion and Risk Aversion

In this part of the Web Appendix we provide a thorough discussion of the intermediate
case where the agent is both risk and loss averse. The agent’s intrinsic utility for money
is a strictly increasing and strictly concave function, which implies that h(·) is strictly
increasing and strictly convex. Moreover, the agent is loss averse, i.e., λ > 1. From
Lemma 1, we know that the constraint set of the principal’s problem is nonempty. By
relabeling signals, each contract can be interpreted as a contract that offers the agent a
(weakly) increasing intrinsic utility profile. This allows us to assess whether the agent
perceives receiving us instead of ut as a gain or a loss. As in the case of pure loss aversion,
we analyze the optimal contract for a given feasible ordering of signals.

The principal’s problem for a given arrangement of the signals is given by
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Program MG:

min
u1,...,uS

S∑
s=1

γs(â)h(us)

subject to

S∑
s=1

γs(â)us − (λ− 1)

S−1∑
s=1

S∑
t=s+1

γs(â)γt(â)[ut − us]− c(â) = ū ,(IRG)

S∑
s=1

(γHs − γLs )us−(ICG)

(λ− 1)

S−1∑
s=1

S∑
t=s+1

[
γs(â)(γHt − γLt ) + γt(â)(γHs − γLs )

]
[ut − us] = c′(â) ,

uS ≥ uS−1 ≥ . . . ≥ u1 .(OCG)

Since the objective function is strictly convex and the constraints are all linear in u =
(u1, . . . , uS), the Kuhn-Tucker theorem yields necessary and sufficient conditions for op-
timality. Put differently, if there exists a solution to the problem (MG) the solution is
characterized by the partial derivatives of the Lagrangian associated with (MG) set equal
to zero.

LEMMA D.1: Suppose (A1)-(A3) hold and h′′(·) > 0, then there exists a second-best
optimal incentive scheme for implementing action â ∈ (0, 1), denoted u∗ = (u∗1, . . . , u

∗
S).

PROOF:
We show that program (MG) has a solution, i.e.,

∑S
s=1 γs(â)h(us) achieves its greatest

lower bound. First, from Lemma 1 we know that the constraint set of program (MG) is

not empty for action â ∈ (0, 1). Next, note that from (IRG) it follows that
∑S
s=1 γs(â)us

is bounded below. Following the reasoning in the proof of Proposition 1 of Grossman
and Hart (1983), we can artificially bound the constraint set—roughly spoken because

unbounded sequences in the constraint set make
∑S
s=1 γs(â)h(us) tend to infinity by a

result from Dimitri Bertsekas (1974). Since the constraint set is closed, the existence of
a minimum follows from Weierstrass’ theorem.

In order to interpret the first-order conditions of the Lagrangian to problem (MG) it
is necessary to know whether the Lagrangian multipliers are positive or negative.

LEMMA D.2: The Lagrangian multipliers of program (MG) associated with the incentive
compatibility constraint and the individual rationality constraint are both strictly positive,
i.e., µIC > 0 and µIR > 0.

PROOF:
Since (IRG) will always be satisfied with equality due to an appropriate adjustment of

the lowest intrinsic utility level offered, relaxing (IRG) will always lead to strictly lower
costs for the principal. Therefore, the shadow value of relaxing (IRG) is strictly positive,
so µIR > 0.

Next, we show that relaxing (ICG) has a positive shadow value, µIC > 0. We do this
by showing that a decrease in c′(â) leads to a reduction in the principal’s minimum cost of
implementation. Let (u∗s)s∈S be the optimal contract under (the original) Program MG,
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and suppose that c′(â) decreases. Now the principal can offer a new contract (uNs )s∈S of
the form

uNs = αu∗s + (1− α)

S∑
t=1

γt(â)u∗t ,(D.1)

where α ∈ (0, 1), which also satisfies (IRG), the relaxed (ICG), and (OCG), but yields
strictly lower costs of implementation than the original contract (u∗s)s∈S .

Clearly, for α̂ ∈ (0, 1), uNs < uNs′ if and only if u∗s < u∗s′ , so (OCG) is also satisfied under
contract (uNs )s∈S .

Next, we check that the relaxed (ICG) holds under (uNs )s∈S . To see this, note that for
α = 1 we have (uNs )s∈S ≡ (u∗s)s∈S . Thus, for α = 1, the relaxed (ICG) is oversatisfied
under (uNs )s∈S . For α = 0, on the other hand, the left-hand side of (ICG) is equal to zero,
and the relaxed (ICG) in consequence is not satisfied. Since the left-hand side of (ICG) is
continuous in α under contract (uNs )s∈S , by the intermediate-value theorem there exists
α̂ ∈ (0, 1) such that the relaxed (ICG) is satisfied with equality.

Last, consider (IRG). The left-hand side of (IRG) under contract (uNs )s∈S with α = α̂
amounts to

S∑
s=1

γs(â)uNs − (λ− 1)

S−1∑
s=1

S∑
t=s+1

γs(â)γt(â)
[
uNt − uNs

]
(D.2)

=

S∑
s=1

γs(â)u∗s − α̂(λ− 1)

S−1∑
s=1

S∑
t=s+1

γs(â)γt(â) [u∗t − u∗s]

>

S∑
s=1

γs(â)u∗s − (λ− 1)

S−1∑
s=1

S∑
t=s+1

γs(â)γt(â) [u∗t − u∗s]

= ū+ c(â) ,

where the last equality follows from the fact that (u∗s)s∈S fulfills the (IRG) with equality.
Thus, contract (uNs )s∈S is feasible in the sense that all constraints of program (MG) are
met. It remains to show that the principal’s costs are reduced. Since h(·) is strictly
convex, the principal’s objective function is strictly convex in α, with a minimum at
α = 0. Hence, the principal’s objective function is strictly increasing in α for α ∈ (0, 1].
Since (uNs )s∈S ≡ (u∗s)s∈S for α = 1, for α = α̂ we have

S∑
s=1

γs(â)h(u∗s) >

S∑
s=1

γs(â)h(uNs ),

which establishes the desired result.

We now give a heuristic reasoning why pooling of information may well be optimal
in this more general case. For the sake of argument, suppose there is no pooling of
information in the sense that it is optimal to set distinct wages for distinct signals. In
this case all order constraints are slack; formally, if us 6= us′ for all s, s′ ∈ S and s 6= s′,
then µOC,s = 0 for all s ∈ {2, . . . , S}. In this case, the first-order condition of optimality
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with respect to us, ∂L(u)/∂us = 0, can be written as follows:

(D.3) h′(us) =

(
µIR + µIC

γHs − γLs
γs(â)

)
︸ ︷︷ ︸

=:Hs

[
1− (λ− 1)

(
2

s−1∑
t=1

γt(â) + γs(â)− 1

)]
︸ ︷︷ ︸

=:Γs

− µIC(λ− 1)

[
2

s−1∑
t=1

(γHt − γLt ) + (γHs − γLs )

]
︸ ︷︷ ︸

=:Λs

.

For λ = 1 we have h′(us) = Hs, the standard “Holmström-formula”.1 Note that Γs > 0
for λ ≤ 2. More importantly, irrespective of the signal ordering, we have Γs > Γs+1. The
third term, Λs, can be either positive or negative. If the compound signal of all signals
below s and the signal s itself are bad signals, then Λs < 0.

Since the incentive scheme is nondecreasing, when the order constraints are not binding
it has to hold that h′(us) ≥ h′(us−1). Thus, if µOC,s−1 = µOC,s = µOC,s+1 = 0 the
following inequality is satisfied:

(D.4) Hs × Γs − Λs ≥ Hs−1 × Γs−1 − Λs−1.

Note that for the given ordering of signals, if there exists any pair of signals s, s − 1
such that (D.4) is violated, then the optimal contract for this ordering involves pooling
of wages. Even when Hs > Hs−1, as it is the case when signals are ordered according to
their likelihood ratio, it is not clear that inequality (D.4) is satisfied. In particular, when
s and s − 1 are similarly informative it seems to be optimal to pay the same wage for
these two signals as can easily be illustrated for the case of two good signals: If s and
s − 1 are similarly informative good signals then Hs ≈ Hs−1 > 0 but Γs < Γs−1 and
Λs > Λs−1, thus condition (D.4) is violated. In summary, it may well be that for a given
incentive-feasible ordering of signals, and thus overall as well, the order constraints are
binding, i.e., it may be optimal to offer a contract which is less complex than the signal
space allows for.

Application with Constant Relative Risk Aversion.—Suppose h(u) = ur, with r ≥ 0
being a measure for the agent’s risk aversion. More precisely, the Arrow-Pratt measure
for relative risk aversion of the agent’s intrinsic utility function is R = 1− 1

r and therefore
constant. The following result states that the optimal contract is still a bonus contract
when the agent is not only loss averse, but also slightly risk averse.

PROPOSITION D.1: Suppose (A1)-(A3) hold, h(u) = ur with r > 1, and λ > 1.
Generically, for r sufficiently small the optimal incentive scheme (u∗s)

S
s=1 is a bonus

scheme, i.e., u∗s = u∗H for s ∈ B∗ ⊂ S and u∗s = u∗L for s ∈ S\B∗ where u∗L < u∗H .

PROOF:
For the agent’s intrinsic utility function being sufficiently linear, the principal’s costs

are approximately given by a second-order Taylor polynomial about r = 1, thus

C(u|r) ≈
∑
s∈S

γs(â)us + Ω(u|r) ,(D.5)

1See Holmström (1979).
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where

Ω(u|r) ≡
∑
s∈S

γs(â)

[
(us lnus)(r − 1) + (1/2)us(lnus)

2(r − 1)2

]
.(D.6)

Relabeling signals such that the wage profile is increasing allows us to express the incen-
tive scheme in terms of increases in intrinsic utility. The agent’s binding participation
constraint implies that

u1 = ū+ c(â)−
S∑
s=2

bs

{
S∑
τ=s

γτ (â)− (λ− 1)

[ S∑
τ=s

γτ (â)

][ s−1∑
t=1

γt(â)

]}
≡ u1(b)(D.7)

and us = u1(b)+
∑s
t=2 bt ≡ us(b) for all s = 2, . . . , S. Inserting the binding participation

constraint into the above cost function and replacing Ω(u|r) equivalently by Ω̃(b|r) ≡
Ω(u1(b), . . . , uS(b)|r) yields

C(b|r) ≈ ū+ c(â) + (λ− 1)

S∑
s=2

bs

[
S∑
τ=s

γτ (â)

][
s−1∑
t=1

γt(â)

]
+ Ω̃(b|r) .(D.8)

Hence, for a given increasing wage profile the principal’s cost minimization problem is:

Program ME:

min
b∈RS−1

+

b′ρ(γ̂, λ, â) + Ω̃(b|r)

subject to b′β(γ̂, λ, â) = c′(â)(IC′)

If r is sufficiently close to 1, then the incentive scheme that solves Program ML also
solves Program ME. Note that generically Program ME is solved only by bonus schemes.
Put differently, even if there are multiple optimal contracts for Program ML, all these
contracts are generically simple bonus contracts. Thus, from Proposition 2 it follows
that generically for r close to 1 the optimal incentive scheme entails a minimum of wage
differentiation. Note that for λ = 1 the principal’s problem is to minimize Ω̃(b|r) even
for r sufficiently close to 1.
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