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Appendix B: Supplementary Material to Section 6: General Nonlinear Tariffs

The consumer’s expected utility from accepting a direct mechanism 〈q(θ),P(θ)〉 for
which truth-telling is a personal equilibrium and q(θ) is increasing, is given by

Eθ [V (θ ,θ)] =
∫

θ̄

¯
θ

{
u(q(θ),θ)−P(θ)−λ

∫
θ

¯
θ

[P(θ)−P(z)] f (z) dz
}

f (θ)dθ .

=
∫

θ̄

¯
θ

[u(q(θ),θ)−P(θ)] f (θ)dθ

−λ

∫
θ̄

¯
θ

∫
θ̄

θ

[P(z)−P(θ)] f (z) f (θ)dzdθ

Using integration by parts, the last term—the expected loss—can be simplified further.∫
θ̄

¯
θ

∫
θ̄

θ

[P(z)−P(θ)] f (z) f (θ)dzdθ

=
∫

θ̄

¯
θ

∫
θ̄

θ

P(z) f (z)dz f (θ)dθ −
∫

θ̄

¯
θ

P(θ)
∫

θ̄

θ

f (z)dz f (θ)dθ

=
∫

θ̄

θ

P(z) f (z)dz F(θ)

∣∣∣∣θ̄
¯
θ

−
∫

θ̄

¯
θ

−P(θ) f (θ)F(θ)dθ −
∫

θ̄

¯
θ

P(θ)[1−F(θ)] f (θ)dθ

=
∫

θ̄

¯
θ

P(θ)[2F(θ)−1] f (θ)dθ .

Thus,

Eθ [V (θ ,θ)] =
∫

θ̄

¯
θ

{
u(q(θ),θ)−P(θ)ξ (θ)

}
f (θ)dθ (B.1)

where ξ (θ) = 1+λ (2F(θ)−1).
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We will formulate the monopolist’s problem as an optimal control problem. In
order to incorporate the participation constraint, we define

X(θ) =
∫

θ

¯
θ

{
u(q(z),z)−P(z)ξ (z)

}
f (z)dz,

and impose X(θ̄)≥ 0. Note that X(θ̄) = Eθ [V (θ ,θ)], X(
¯
θ) = 0, and

X ′(θ) = {u(q(θ),θ)−P(θ)ξ (θ)} f (θ).

In order to solve the monopolist’s problem, we want to express the payment rule as a
function of the allocation rule. The integral version of the local PE constraint can be
derived from the envelope theorem (see Milgrom, 2004):

V (
¯
θ)+

∫
θ

¯
θ

∂θ u(q(s),s)ds = u(q(θ),θ)−P(θ)−λ

∫
θ

¯
θ

(P(θ)−P(z)) f (z)dz. (B.2)

If P is absolutely continuous, we can equivalently work with the differential version
of this constraint

P′(θ) =
∂qu(q(θ),θ)

ρ(θ)
q′(θ). (B.3)

where ρ(θ) = 1+λF(θ). (This is the revenue equivalence formula (13) from Section
6.)

LEMMA B.1. Let (q,P) be a mechanism such that q and P are absolutely continuous
and satisfy (B.3). Then (q,P) satisfies (PE). Moreover, (B.3) is necessary for (PE).

Proof. Differentiating V (θ ,ϕ) with respect to the report θ , we get

∂θV (θ ,ϕ) = ∂qu(q(θ),ϕ)q′(θ)−P′(θ)ρ(θ)

= [∂qu(q(θ),ϕ)−∂qu(q(θ),θ)]q′(θ)

{
≤ 0, if θ > ϕ,

≥ 0, if θ < ϕ.

Hence, truth-telling (θ = ϕ) maximizes V (θ ,ϕ).
(B.3) is clearly necessary for (PE) because it is the first-order condition of the

consumer’s maximization problem. �

We cannot assume a priori, however, that P is absolutely continuous. Instead, we
first solve the monopolist’s problem assuming that q is globally Lipschitz continuous
(which implies absolute continuity). The following Lemma shows that this also
implies Lipschitz continuity of P and hence absolute continuity.

LEMMA B.2. Let 〈q(θ),P(θ)〉θ∈Θ be a direct mechanism that satisfies (PE). If q is
globally Lipschitz continuous and Assumption 1 is fulfilled, then P is also globally
Lipschitz continuous.
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Proof. For θ1 < θ2, the personal equilibrium constraint implies

P(θ2)−P(θ1)≤u(q(θ2),θ2)−u(q(θ1),θ2)

−λ

∫
θ2

¯
θ

[P(θ2)−P(z)] f (z)dz+λ

∫
θ1

¯
θ

[P(θ1)−P(z)] f (z)dz

=u(q(θ2),θ2)−u(q(θ1),θ2)

−λ

∫
θ2

θ1

[P(θ2)−P(z)] f (z)dz+λ [P(θ1)−P(θ2)]F(θ1)

≤u(q(θ2),θ2)−u(q(θ1),θ2)

≤K (θ2−θ1)

for some K < ∞, where the last line follows from Lipschitz continuity of q and u
(Assumption 1). �

Assuming Lipschitz continuity of q, we can restate the problem of the
monopolistic seller as the following control problem.

CONTROL PROBLEM:

max
(q,P,X ,v)

∫
θ̄

¯
θ

[P(θ)− cq(θ)] f (θ) dθ

subject to (i) P′(θ) =
∂qu(q,θ)

ρ(θ)
v

(ii) q′(θ) = v

(iii) X ′(θ) = (u(q,θ)−P(θ)ξ (θ)) f (θ)

(iv) v(θ) ∈ [0,K]

(v) q(
¯
θ)≥ 0

(vi) X(
¯
θ) = X(θ̄) = 0.

v is the control variable and P, q, and X are state variables. The state variable X and
constraints (iii) and (vi) are introduced to capture the participation constraint. The
constant K > 0 in constraint (iv) is the Lipschitz-constant.

In the control problem, we impose the additional assumption that q is Lipschitz
continuous with constant K. We will show that for K sufficiently large, the constraint
v(θ)≤K is not binding in the solution to the control problem. The next Lemma shows
that an optimal solution for which v(θ)< K, is also an optimal solution to the seller’s
problem without the Lipschitz constraint.

LEMMA B.3. Let (P,q,X ,v) be an optimal solution to the control problem for some
K, that satisfies

v(θ)< K, for all θ ∈Θ.

Then (q,P) is an optimal solution to the monopolist’s problem without the assumption
of Lipschitz continuity.
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Proof. Suppose 〈q∗(θ),P∗(θ)〉θ∈Θ is an optimal mechanism for the monopolist (q∗

need not be Lipschitz continuous). If we extend q∗ to the real line by setting q∗(θ) =
q∗(

¯
θ) for θ <

¯
θ , and q∗(θ) = q∗(θ̄) for θ > θ̄ , we can approximate q∗ by

qk(θ) := k
∫

θ+ 1
2k

θ− 1
2k

q∗(s)ds.

This yields a sequence of functions (qk)k∈N such that qk is Lipschitz continuous with
constant k, and qk(θ)→ q∗(θ) and q′k(θ)→ q∗′(θ) as k → ∞ for almost every θ .
Using the local PE constraint (i) and the participation constraint (vi), we define the
corresponding payment rules (Pk)k.

If we ignore the participation constraint and arbitrarily set the payment of the
lowest type to zero, we get a sequence of payments rules (P̃k)k. (Pk differs from
P̃k by the constant Pk(

¯
θ), which is determined by the participation constraint.) By

Helly’s theorem, there exists a sub-sequence (P̃kn)n and an increasing function P̃,
such that P̃kn(θ) → P̃(θ) for almost every θ . Furthermore (possibly after taking
sub-sequences again), Pkn( ¯

θ) converges to some value P̂(
¯
θ) if n → ∞. For θ >

¯
θ

we define P̂(θ) = P̂(
¯
θ) + P̃(θ). By definition, each mechanism in the sequence

(〈qkn(θ),Pkn(θ)〉θ∈Θ)n fulfills the local PE constraint and the participation constraint.
Furthermore the sequence converges to the mechanism 〈q∗(θ), P̂(θ)〉θ∈Θ. Since the
sequence of mechanisms is bounded and converges almost everywhere, the limit also
fulfills participation and PE constraints.

Next we show that P̂(θ) = P∗(θ). Denote the utility of type θ in the mechanism
〈q∗(θ), P̂(θ)〉θ∈Θ by V̂ (θ) and in the optimal mechanism by V ∗(θ). Define D(θ) =
P∗(θ)− P̂(θ). Since both mechanisms fulfill (B.2), we have D(

¯
θ) = V̂ (

¯
θ)−V ∗(

¯
θ).

Subtracting (B.2) for the two mechanism yields

D(θ)ρ(θ) = V̂ (
¯
θ)−V ∗(

¯
θ)+λ

∫
θ

¯
θ

D(z) f (z)dz

Hence, D is absolutely continuous. Differentiating and rearranging we get

D′(θ) = 0.

Therefore, D(
¯
θ) 6= 0 is not possible because both mechanisms fulfill the individual

rationality constraint with equality. We have shown that P̂ = P∗.
Now let (q,P,X ,v) be an optimal solution to the control problem such that

v(θ)<K for some K. Since the Lipschitz constraint for K is not binding for (q,P,X ,v),
the expected revenue from (q,P) is at least as high as the revenue from (qkn ,Pkn) for
all kn > K. As qkn(θ) and Pkn(θ) converge to q∗(θ) and P∗(θ) almost everywhere,
the revenue from (q,P) is also weakly greater than the revenue from (q∗,P∗). Hence,
(q,P) is an optimal mechanism. �

The Hamiltonian corresponding to the above problem is given by

H (θ ,q,T,X , pq, pP, pX ,v) = (T − cq) f (θ)+ pqv+
pP

ρ(θ)
∂qu(q,θ)v

+ pX [u(q,θ)−Pξ (θ)] f (θ).
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Applying the Pontryagin Maximum Principle (cf. Clarke, 1983) we obtain the
following necessary conditions for an optimal control. (pq, pP and pX are absolutely
continuous functions.)

(i) adjoint equations: for almost every θ ∈Θ,

p′q(θ)


= c f (θ)− pP(θ)

ρ(θ) ∂qqu(q(θ),θ)v(θ)

− pX(θ)∂qu(q(θ),θ) f (θ), if q(θ)< qS(θ),

∈
[
c f (θ)− pP(θ)

ρ(θ) ∂qqû(qS(θ),θ)v(θ), c f (θ)
]
, if q(θ) = qS(θ),

= c f (θ), if q(θ)> qS(θ).
(B.4)

p′P(θ) =− f (θ)+ pX(θ)ξ (θ) f (θ), (B.5)

p′X(θ) = 0 (⇒ p′X(θ) = pX). (B.6)

(ii) optimality of control: for almost every θ ∈Θ,

v(θ)


= K, if pq(θ)+

pP(θ)
ρ(θ) ∂qu(q(θ),θ)> 0,

∈ [0,K], if pq(θ)+
pP(θ)
ρ(θ) ∂qu(q(θ),θ) = 0,

= 0, if pq(θ)+
pP(θ)
ρ(θ) ∂qu(q(θ),θ)< 0.

(B.7)

(iii) transversality conditions:

pq(θ̄) = pP(
¯
θ) = pP(θ̄) = 0, (B.8)

pq(
¯
θ)≤ 0 (“ = ” if q(

¯
θ)> 0), (B.9)

and pX(
¯
θ), pX(θ̄) free (B.10)

LEMMA B.4. pX = 1 and pP(θ) = λ ((F(θ)2−F(θ))(< 0).

Proof. The adjoint equation for p′P and the transversality condition imply

pP(θ) =
∫

θ

¯
θ

− f (s)+ pX f (s)ξ (s)ds. (B.11)

Evaluating equation (B.11) at θ = θ̄ and using the transversality condition for pP(θ̄)
we obtain ∫

θ̄

¯
θ

− f (s)+ pX f (s)[1+λ (2F(s)−1)]ds = 0

⇔−1+ pX [1+λ

∫
θ̄

¯
θ

(2F(s)−1) f (s)ds] = 0

⇔ pX = 1.

Inserting pX = 1 into (B.5) and (B.11) we obtain

p′P(θ) = λ (2F(θ)−1) f (θ)

pP(θ) = λ [(F(θ))2−F(θ)].

�
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Denote the Lipschitz constants of q̃ (from the main text) and qS by K̃ and KS,
respectively. Our assumptions on the utility function guarantee that max{K̃,KS}< ∞.

LEMMA B.5. If K > max{K̃,KS}, then q(θ)≤ qS(θ) for all θ ∈Θ.

Proof. Suppose by contradiction q(θ) > qS(θ) for all θ in a maximal interval (a,b)
with a < b. Equation (B.4) then implies that p′q(θ) = c f (θ) for θ ∈ (a,b). If pq(θ)≥
0, for some θ < b then we must have v(t) =K for all t ∈ (θ ,b) and b = θ̄ . This implies
pq(θ̄)> 0 in contradiction to the transversality condition. Hence, we have pq(θ)< 0
for all θ ∈ (a,b). This implies v(θ) = 0 for all θ ∈ (a,b) and since qS is increasing
we must have a =

¯
θ . But q(a) > qS(a) > 0 implies pq(a) = 0 by the transversality

condition. This is a contradiction to p′q(θ) = c f (θ)> 0 for θ ∈ (a,b). �

LEMMA B.6. Suppose that K > max{K̃,KS}. If q(θ) = qS(θ) for all θ ∈ (a,b),
a < b, then for all θ ∈ (a,b)

c f (θ)− pP(θ)

ρ(θ)
∂qqû(qS(θ),θ)qS′(θ)≤ 0. (B.12)

Proof. Since ∂qu(qS(θ),θ) = 0 and qS′(θ) ∈ (0,K), (B.7) implies that pq(θ) = 0 for
all θ ∈ [a,b]. Hence, p′q(θ) = 0 and from (B.4) we obtain (B.12). �

Next we derive properties of the optimal solution if q(θ) < qS(θ). Integrating
(B.4), yields

pq(t) = pq(s)+
∫ t

s
c f (r)− pP(r)

ρ(r)
∂qqu(q(r),r)v(r)−∂qu(q(r),r) f (r)dr

= pq(s)+
∫ t

s
c f (r)− pP(r)

ρ(r)

[
d
dr

∂qu(q(r),r)−∂qθ u(q(r),r)
]

−∂qu(q(r),r) f (r)dr

= pq(s)+
pP(s)
ρ(s)

∂qu(q(s),s)− pP(t)
ρ(t)

∂qu(q(t), t)

+
∫ t

s
c f (r)+

[
d
dr

pP(r)
ρ(r)

]
∂qu(q(r),r)−∂qu(q(r),r) f (r)

+
pP(r)
ρ(r)

∂qθ u(q(r),r)dr

Using [
d

dθ

pP(θ)

ρ(θ)
− f (θ)

]
=−(λ +1)

f (θ)
(ρ(θ))2

we get

pq(t) = pq(s)+
pP(s)
ρ(s)

∂qu(q(s),s)− pP(t)
ρ(t)

∂qu(q(t), t)

+
∫ t

s
c f (r)− (λ +1)

f (r)
(ρ(r))2 ∂qu(q(r),r)+

pP(r)
ρ(r)

∂qθ u(q(r),r)dr (B.13)
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LEMMA B.7. If K > max{K̃,KS}, then v(θ)< K for all θ ∈Θ.

Proof. Suppose by contradiction, that for all θ in a maximal interval (a,b), a < b, the
control variable is v(θ) = K. Then pq(θ)+

pP(θ)
ρ(θ) ∂qu(q(θ),θ) ≥ 0 with equality for

θ ∈{a,b}. If the endpoints are a=
¯
θ or b= θ̄ , respectively, then equality follows from

the transversality conditions. Otherwise, it follows because (a,b) is chosen maximally
and the left-hand side of the inequality is continuous in θ . A strict inequality at an
endpoint would imply that the interval where v(θ) = K, extends beyond the endpoint.

We derive a contradiction by showing that q(a) ≥ q∗(a) and q(b) ≤ q∗(b). First,
suppose by contradiction that q(a)< q∗(a). Using (B.13) for θ > a close to a we get:

pq(θ)+
pP(θ)

ρ(θ)
∂qu(q(θ),θ)

=
∫

θ

a
c f (r)− (λ +1)

f (r)
(ρ(r))2 ∂qu(q(r),r)+

pP(r)
ρ(r)

∂qθ u(q(r),r)dr

<
∫

θ

a
c f (r)− (λ +1)

f (r)
(ρ(r))2 ∂qu(q∗(r),r)+

pP(r)
ρ(r)

∂qθ u(q∗(r),r)dr ≤ 0

The strict inequality follows from q(a) < q∗(a) because for r close to a, q(θ) <
q∗(θ) and hence ∂qu(q(r),r) > ∂qu(q∗(r),r) by concavity of u and ∂qθ u(q(θ),θ) ≥
∂qθ u(q∗(θ),θ) by Assumption 3. The weak inequality follows from the definition of
q∗. But this contradicts u(θ) = K. Hence q(a)≥ q∗(a). Similarly, it can be shown that
q(b) ≤ q∗(b). But q(a) ≥ q∗(a), q(b) ≤ q∗(b) and v(θ) = K for θ ∈ (a,b) cannot be
fulfilled simultaneously if K > max{K̃,KS}. �

LEMMA B.8. If q∗ is strictly increasing, then every optimal solution to the control
problem is strictly increasing.

Proof. Suppose by contradiction, that the control is zero (v(θ) = 0) on a maximal
interval (a,b). Then q(θ) < qS(θ) for θ ∈ (a,b) and pq(θ)+

pP(θ)
ρ(θ) ∂qu(q(θ),θ) ≤ 0,

with equality for θ = b and for θ = a unless a =
¯
θ and q(a) = 0. We first show that

q(a) = q∗(a). Suppose by contradiction that q(a) < q∗(a). Using (B.13) for θ > a
close to a we get (see the proof of the previous lemma)

pq(θ)+
pP(θ)

ρ(θ)
∂qu(q(θ),θ)

<
∫

θ

a
c f (r)− (λ +1)

f (r)
(ρ(r))2 ∂qu(q∗(r),r)+

pP(r)
ρ(r)

∂qθ u(q∗(r),r) dr ≤ 0

This implies pq(θ)+
pP(θ)
ρ(θ) ∂qu(q(θ),θ) < 0 and v(θ) = 0 for all θ ∈ (a, θ̄) if q∗ is

strictly increasing. Since pP(θ̄) = 0, this implies pq(θ̄) < 0 in contradiction to the
transversality condition. Hence q(a) ≥ q∗(a). If q(a) > q∗(a), we have q∗(a) = q̃(a)
and q(a) > q̃(a). Hence, using (B.13) we get pq(θ) +

pP(θ)
ρ(θ) ∂qu(q(θ),θ) > 0 for θ

close to a which contradicts v(θ) = 0. Similarly, we can show that q(b)≥ q∗(b) which
yields the desired contradiction if q∗(θ) is strictly increasing. �
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Proof of Proposition 4. Consider an optimal solution (q,P,X ,v) to the control
problem for K > max{K̃,KS}. By Lemmas B.7 and B.8, we have v(θ) ∈ (0,K). If
q(θ) < qS(θ) for all θ ∈ (a,b) this implies pq(θ) +

pP(θ)
ρ(θ) ∂qu(q(θ),θ) = 0 for all

θ ∈ [a,b]. Inserting into (B.13) we get∫
θ

a
c f (r)− (λ +1)

f (r)
(ρ(r))2 ∂qu(q(r),r)+

pP(r)
ρ(r)

∂qθ u(q(r),r)dr = 0.

Differentiating this with respect to θ yields for almost every θ ∈ (a,b):

c f (θ)− (λ +1)
f (θ)

(ρ(θ))2 ∂qu(q(θ),θ)+
pP(θ)

ρ(θ)
∂θ ∂qu(q(θ),θ) = 0

Rearranging, we get

∂qu(q(θ),θ) =
(ρ(θ))2

λ +1
c+

pP(θ)ρ(θ)

(λ +1)
∂θqu(q(θ),θ)

f (θ)
(B.14)

=
(1+λF(θ))2

λ +1
c−F(θ)(1−F(θ))

λ (1+λF(θ))

λ +1
∂qθ u(q(θ),θ)

f (θ)
.

This is the first-order condition (14) from the main paper. Inserting qS′(θ) =

− ∂qθ û(qS(θ),θ)

∂qqû(qS(θ),θ)
into (B.12) yields

f (θ)c+
pP(θ)

ρ(θ)
∂qθ û(qS(θ),θ)≤ 0,

or equivalently,

(ρ(θ))2

λ +1
c+

pP(θ)ρ(θ)

(λ +1)
∂qθ û(qS(θ),θ)

f (θ)
≤ 0.

This is the opposite of condition (15) in the main paper. By Assumption 1, (B.14) has
a solution q(θ)< qS(θ) if and only if (B.12) is violated. Assumption 1 also guarantees
uniqueness of the solution. Hence, q(θ) = q̃(θ) if (B.12) is violated ((15) is fulfilled).
If (B.12) is fulfilled ((15) is violated),

0 ∈
[

c f (θ)− pP(θ)

ρ(θ)
∂qqû(qS(θ),θ)qS′(θ), c f (θ)

]
,

and hence q(θ) = qS(θ) fulfills the necessary condition from the maximum principle.
We have shown that q∗(θ) fulfills the necessary conditions for optimality and because
q(θ) ≤ qS(θ) it is the unique solution. Existence of a solution can be shown by
standard techniques. Therefore, we have have constructed an optimal solution to the
control problem. By Lemma B.3 it is also a solution to the general problem. �
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Appendix C: Proofs of Section 7.1: Heterogeneous Consumers

Proof of Lemma 2. Define V (λ ,θ) as the consumer’s surplus for a given demand type
on the personal equilibrium path. Formally,

V (λ ,θ) = u(q̂(θ , p),θ)− pq̂(θ , p)−L−λ p
∫

θ

¯
θ

[q̂(θ , p)− q̂(ϕ, p)] f (ϕ)dϕ

= u(q̂(θ , p),θ)− pq̂(θ , p)−L−λ p
∫ t(θ ,p)

¯
θ

[q̂(θ , p)− q̂(ϕ, p)] f (ϕ)dϕ.

The second line holds because q̂(θ , p) = q̂(ϕ, p) for ϕ ∈ [t(θ , p),θ ]. Taking the
derivative of V (λ ,θ) with respect to λ yields

V ′(λ ,θ) = [∂qu(q̂(θ , p),θ)− p]∂λ q̂(θ , p)− p
∫ t(θ ,p)

¯
θ

(q̂(θ , p)− q̂(ϕ, p)) f (ϕ)dϕ

−λ p
∫ t(θ ,p)

¯
θ

(∂λ q̂(θ , p)−∂λ q̂(ϕ, p)) f (ϕ)dϕ.

= [∂qu(q̃(t(θ , p), p),θ)− p(1+λF(t(θ , p)))]︸ ︷︷ ︸
=0

∂λ q̂(θ , p)

− p
∫ t(θ ,p)

¯
θ

(q̂(θ , p)− q̂(ϕ, p)) f (ϕ)dϕ +λ p
∫ t(θ ,p)

¯
θ

∂λ q̂(ϕ, p) f (ϕ)dϕ.

The first integral in the last line is non-negative since q̂(θ , p) is non-decreasing
in θ . The second integral is negative because ∂λ q̂(θ , p) ≤ 0, which follows
immediately from ∂λ q̃(θ , p) = pF(θ)/[∂qqu(q̂(θ , p),θ)]≤ 0. Hence, we have shown
that V ′(λ ,θ)≤ 0.

The consumer’s expected utility is given by Eθ [V (λ ,θ)] =
∫

θ̄

¯
θ

V (λ ,θ) f (θ)dθ .
Hence, the change in expected utility due to an increase in the consumer’s degree of
loss aversion is given by dEθ [V (λ ,θ)]/dλ =

∫
θ̄

¯
θ

V ′(λ ,θ) f (θ)dθ ≤ 0. �

Appendix D: Supplementary Material to Section 7.2: Competition

D.1. Market Framework

In this part of the web appendix, a formal model of imperfect competition is
considered. Moreover, we allow for heterogeneity among consumers with respect to
the degree of loss aversion. Consider a market for one good or service where two
firms, A and B, are active. Moreover, there is a continuum of ex ante heterogeneous
consumers whose measure is normalized to one.

Players & Timing.—The consumers can be partitioned into two groups that differ
in their degrees of loss aversion. Let the two groups be denoted by j = 1,2 with
0 ≤ λ1 < λ2. The distribution of demand types is identical for both groups of loss-
averse consumers. As before, the demand type is unknown to consumers and firms at
the point of contracting.
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The two symmetric firms, A and B, produce at constant marginal cost c > 0
and without fixed cost. Each firm i = A,B offers a two-part tariff to each group of
consumers j = 1,2. The tariff is given by T i

j (q) = Li
j+ pi

jq, where q≥ 0 is the quantity,
and Li

j and pi
j denote the fixed fee and the unit price, respectively, charged by firm i

from consumers of type j. We will analyze the symmetric information case in which
firms can observe λ , as well as the asymmetric information case in which λ is private
information of the consumers.

The timing is as follows: (1) Firms simultaneously and independently offer a
menu of two-part tariffs {(Li

j, pi
j)} j=1,2 to consumers. (2) Each consumer either signs

exactly one contract or none. (3) Each consumer privately observes his demand type.
Thereafter, each consumer who accepted a contract chooses a quantity. (4) Finally,
payments are made according to the demanded quantities and the concluded contracts.

Discrete Choice Framework.—The products of the two firms are symmetrically
differentiated. We assume that, next to λ , consumers are ex ante heterogeneous with
respect to their brand preferences. Each consumer has idiosyncratic preferences for
differing brands of the product (firms), which are parameterized by ζ = (ζ 0,ζ A,ζ B).
A consumer with brand preferences ζ has net utility vi + ζ i if he buys from firm i,
and net utility ζ 0 if no contract is signed, where vi = Eθ [U(·)]. The brand preferences
ζ = (ζ 0,ζ A,ζ B) are independently and identically distributed according to a known
distribution among the two groups of consumers.

To solve for the tariffs that are offered in the pure-strategy Nash equilibrium by
the two firms, we follow the approach of Armstrong and Vickers (2001) and model
firms as offering utility directly to consumers. Each two-part tariff can be considered
as a deal of a certain expected value that is offered by a firm to its consumers. Thus,
firms compete over customers by trying to offer them better deals, i.e., a two-part tariff
that yields higher utility (including loss utility). Put differently, we decompose a firm’s
problem into two parts. First, we solve for the two-part tariff that maximizes profits
subject to the constraint that the consumer receives a certain utility level. Thereafter,
we solve for the utility levels (vi

1,v
i
2) a firm i offers to its customers. It is important

to note that when λ is unobservable, the two-part tariffs have to be designed such that
each group of consumers prefers the offer that is intended for them. Suppose that the
utility offered to consumers of group j by firm A and firm B is vA

j and vB
j , respectively.

Furthermore, assume that the incentive constraints are satisfied. Then, the market share
of firm A in the submarket j is m j(vA

j ,v
B
j ) and the market share of firm B is m j(vB

j ,v
A
j ),

with m j(vA
j ,v

B
j )+m j(vB

j ,v
A
j )≤ 1. The market share function m j(·) is increasing in the

first argument and decreasing in the second. Since the brand preferences are identically
distributed among the two groups, the market share functions are identical for the two
submarkets, i.e., m1(·) = m2(·) = m(·). Following Armstrong and Vickers, we impose
some regularity conditions in order to guarantee existence of equilibrium. First, we
assume that

∂vAm(vA,vB)

m(vA,vB)
is non-decreasing in vB.
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Second, we assume that for each submarket the collusive utility level ṽ j exists which
maximizes (symmetric) joint profits.1

D.2. Firm’s Subproblem: Joint Surplus Maximization

For this part, suppose firms can observe consumers’ types λ ∈ {λ1,λ2}. With
consumers’ loss-aversion types being observable, the two market segments of types
λ1 and λ2 can be viewed as distinct markets. Thus, for the analysis we can focus on
one market where consumers are homogeneous with respect to their degree of loss
aversion, which is denoted by λ .

Suppose firm i ∈ {A,B} offers consumers a “deal" using a two-part tariff (Li, pi)
that gives them utility vi. Then, if a consumer with brand preferences ζ = (ζ 0,ζ A,ζ B)
purchases from firm i his net utility is vi+ζ i. Let π j(vi) be firm i’s maximum profit per
customer of type j when offering them a deal that yields utility vi. The per-consumer
profit function is the same for both firms, but in general it depends on the consumer’s
degree of loss aversion λ . For now we focus on one market segment and therefore the
subscript indicating the loss-aversion type can be omitted without confusion. Since
π(·) is the same for both firms, we will omit firm’s superscript in the following. With
this notation, π(v) is given by the solution to the problem:

π(v) = max
L,p≥0

L+(p− c)
∫

θ̄

¯
θ

q̂(θ , p) f (θ)dθ (D.1)

s.t. Eθ [U(q̂(θ , p)|θ ,〈q(ϕ, p)〉)] = v.

First, we study the firm’s subproblem, that is, we derive the optimal two-part tariff
that solves the above problem. Thereafter, we solve for the utility levels and the
corresponding tariffs which are offered by the two firms in equilibrium. Put differently,
the task is to maximize a firm’s profit over the choice variables p and L subject to the
constraint that the consumer’s expected utility from the offered deal is v. The firm’s
tariff choice problem can be restated as a problem of choosing only the unit price p.
The firm chooses p to maximize S(p)− v, i.e., the firm chooses the marginal price
p such that the joint surplus of the two contracting parties, the consumer and the
firm, is maximized. The optimal marginal price p̂ is independent of the utility level v,
that the firm offers to the consumer. This immediately implies that π ′(v) =−1. More
importantly, the optimal marginal price is characterized by the same conditions as in
the case of a monopolistic firm.

In the following we focus on the profit maximization problem of firm A. We
assume that Assumption 2 holds for both types of loss-averse consumers, i.e., for
λ ∈ {λ1,λ2}. Moreover, it is assumed that Σ(λ2)≥ c.

1. For a detailed description of the competition-in-utility-space framework and the needed assumptions
see Armstrong and Vickers (2001). A similar approach is used by Rochet and Stole (2002).
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D.3. Symmetric Information Case

Consider market segment j ∈ {1,2}. For a given utility level vB
j offered by firm B, the

profit maximization problem of firm A is given by

max
vA

j

m(vA
j ,v

B
j )π j(vA

j ) . (D.2)

The necessary first-order condition for profit maximization amounts to

∂vA
j
m(vA

j ,v
B
j )π j(vA

j )+m(vA
j ,v

B
j )π

′
j(v

A
j ) = 0 . (D.3)

Remember that π ′j(v
A)=−1. The optimal marginal price is unaffected by the choice of

vA
j . If firm A offers one unit utility more to consumers, then this is optimally achieved

by lowering the fixed fee by one unit. The fixed fee is a one-to-one transfer from the
consumer to the firm. Define

Φ(v)≡ m(v,v)
∂vAm(v,v)

.

Applying Proposition 1 of Armstrong and Vickers (2001), the firm’s per customer
profit in submarket j in the symmetric equilibrium is given by

π j(v̂ j) = Φ(v̂ j) ,

where v̂ j denotes the utility offered to the consumers of type λ j by both firms
in equilibrium. As is shown by Armstrong and Vickers, there are no asymmetric
equilibria. Moreover, the equilibrium often is unique.2 The following proposition
summarizes the tariffs offered by the two firms in equilibrium.

PROPOSITION D.1 (Full Information). Suppose that Assumption 2 holds for
consumers of both groups. Then, in equilibrium,

(i) if Σ(λ1)< c≤ Σ(λ2) both firms offer the tariff (p̂, L̂) with a positive unit price to
consumers of type λ1, and a flat-rate tariff (0,LF) to consumers of type λ2.

(ii) if c≤ Σ(λ1)< Σ(λ2), then both firms offer the flat-rate tariff (0,LF) to both types
of loss-averse consumers.

The tariffs (p̂, L̂) and (0,LF) satisfy: S′1(p̂) = 0,

L̂ = Φ(v̂1)− (p̂− c)
∫

θ̄

¯
θ

q̂1(θ , p̂) f (θ)dθ

and LF = Φ(v̂2)+ c
∫

θ̄

¯
θ

qS(θ) f (θ)dθ ,

respectively, with p̂ ∈ (0,c].

2. See Armstrong and Vickers (2001) for sufficient conditions for a unique equilibrium.
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Proof. In order to apply Proposition 1 of Armstrong and Vickers (2001), the
following three properties have to be satisfied: (i) ∂vAm(vA,vB)/m(vA,vB) is non-
decreasing in vB, (ii) there exists ṽ j > −∞ that maximizes m(v,v)π j(v) for j = 1,2,
and (iii) for j = 1,2 there exists v̄ j defined by π j(v̄ j) = 0, π j(v) < 0 if v > v̄ j. Since
we explicitly assumed (i) and (ii) these properties are satisfied. To see that (iii) is
also satisfied note that v̄ j = maxp{S j(p)}. Obviously, π j(v̄ j) = 0 and π j(v) < 0 if
v > v̄ j. Hence, we can apply Proposition 1 of Armstrong and Vickers. According
to this proposition, there are no asymmetric equilibria and the equilibrium utility
level v̂ j satisfies v̂ j ∈ (ṽ j, v̄ j). Since m(vA,vB)π j(vA) is continuously differentiable,
the equilibrium utility level satisfies the first-order condition of profit maximization.
Thus, π j(v̂ j) = Φ(v̂ j).

From Proposition 3 it follows that the optimal marginal price p̂ j is greater than
zero if and only if Σ(λ j)< c. If this is the case, then p̂ j is such that S′j(p̂ j) = 0, as was
shown in the proof of Proposition 3. The per-customer profit of a firm is given by

π j = L+(p− c)
∫

θ̄

¯
θ

q̂ j(θ , p) f (θ)dθ . (D.4)

Since, in equilibrium, π j = Φ(v̂ j) the equilibrium fixed fee is given by

L j = Φ(v̂ j)− (p j− c)
∫

θ̄

¯
θ

q̂ j(θ , p j) f (θ)dθ . (D.5)

Replacing p j by p̂ and 0, leads to the fixed fees L̂ and LF , respectively. �

If the degree of loss aversion of the less loss-averse consumers is below the
threshold given by Σ(λ ) = c, then firms offer a measured tariff to these consumers.
Next to the measured tariff, firms offer a flat-rate tariff to the more loss-averse
consumers. If the degree of loss aversion of both types is above the threshold, then
firms offer only a single tariff, which is a flat-rate tariff.

D.4. Asymmetric Information Case

In this subsection, we investigate the tariffs offered by the two firms when facing a
screening problem, i.e., when the degree of loss aversion is private information. We
show that the firms can screen consumers with respect to the degree of loss aversion
without costs, if Φ′(v)≥ 0.3 The main challenge is to show that consumers self-select
into the right tariff if the firms offer a flat rate next to a measured tariff.

To fix ideas, suppose that Σ(λ1)< c≤Σ(λ2), so that such a menu would be optimal
in the symmetric information case (see Proposition D.1). Furthermore, suppose that
the firms offer the same tariffs as in the symmetric information case. Φ′(v)≥ 0 implies
that the additional surplus generated for the less loss-averse consumers of group one,

3. For instance, this condition is satisfied for the standard Hotelling model and for the logit demand
model, see Section D.5 of this Appendix.



Herweg & Mierendorff Consumer Loss Aversion and Flat-Rate Tariffs 14

is shared between the two contracting parties. In other words, it implies v̂1 > v̂2 and
that in equilibrium, the profit that a firm earns from a consumer of group one who
subscribes to the measured tariff, is greater than the profit from a consumer of group
two, who subscribes to the flat rate.

Remember that the expected utility from a flat rate is independent of the degree
of loss aversion. Therefore, v̂1 > v̂2 immediately implies that the less loss-averse
consumers of group one do not have an incentive to choose the flat rate. Conversely,
we have to show that the more loss-averse consumers of group one do not have an
incentive to deviate to the measured tariff. Since v̂1 > v̂2, we cannot simply use Lemma
2 in order to conclude that such a deviation lowers their utility. By inspecting the
profit of a firm from the measured tariff, however, we observe that it decreases with
demand because the unit price is below marginal cost. Since demand is decreasing in
the degree of loss aversion, the profit from a (deviating) consumer of group two who
subscribes to the measured tariff is higher than the profit from a consumer from group
one. Furthermore, Φ′(v) ≥ 0 implies that the latter profit is greater than the profit
from the flat rate. Hence, a firm’s profit is increased by a deviation of a consumer
of group two. On the other hand, the joint surplus is decreased by the deviation—
since c≤ Σ(λ2), the flat rate maximizes the joint surplus for consumers of group two.
Therefore, the expected utility must decrease if a consumer from group two deviates.

PROPOSITION D.2 (Asymmetric Information). Suppose that Assumption 2 holds
for consumers of both groups and that Φ′(v)≥ 0. Then,

(i) if Σ(λ1)< c≤ Σ(λ2) both firms offering tariff (p̂, L̂) with a positive unit price to
consumers of type λ1, and flat-rate tariff (0,LF) to consumers of type λ2 is an
equilibrium.

(ii) If c ≤ Σ(λ1) < Σ(λ2), then in equilibrium both firms offer the flat-rate tariff
(0,LF) to both types of loss-averse consumers.

The tariffs, (p̂, L̂) and (0,LF), are given in Proposition D.1.

Proof. Irrespective of the rival’s tariff offer, if the sorting constraint is satisfied it
is optimal for a firm to choose p j such that S j(p j) is maximized. Put differently,
the firm will choose the method of generating v j that maximizes its (per-customer)
profits. Thus, if no type λ ∈ {λ1,λ2} has an incentive to mimic the other type, it is
an equilibrium that the firms offer the same tariffs as in the full information case.
Obviously, in case (ii) where c ≤ Σ(λ1) < Σ(λ2), both firms offer a flat-rate tariff to
consumers. In this case, a flat-rate tariff maximizes S1(p) as well as S2(p). Moreover,
the generated joint surplus is the same for both types of loss-averse consumers. Since
the brand preferences are i.i.d. across the λ1 and λ2 types, in any equilibrium each firm
offers a single flat-rate tariff to consumers.

In the remaining part of the proof we show that in the case where Σ(λ1) < c ≤
Σ(λ2), neither type λ1 has an incentive to choose the tariff (0,LF) nor does type λ2

have an incentive to choose the tariff (p̂, L̂).

CLAIM D.1. v̂1 ≥ v̂2.
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Proof. Let S∗j ≡maxp{S j(p)}. Note that S1(0) = S2(0) = S∗2. The firm’s per customer
profit from type j = 1,2 when offering utility v is

π j(v) = S∗j − v . (D.6)

Thus, for any v it holds that π1(v) ≥ π2(v), since S∗1− v ≥ S∗2− v. The equilibrium
utilities are characterized by π j(v̂ j) =Φ(v̂ j). Hence, we obtain the following relations:

Φ(v̂1) = π1(v̂1)≥ π2(v̂1) (D.7)

π1(v̂2)≥ π2(v̂2) = Φ(v̂2) . (D.8)

Suppose by contradiction, that v̂1 < v̂2. This immediately implies that π j(v̂1)> π j(v̂2).
Hence,

Φ(v̂1) = π1(v̂1)> π1(v̂2)≥ π2(v̂2) = Φ(v̂2) . (D.9)

Since Φ′(v)≥ 0 the above formula holds only if v̂1 > v̂2, a contradiction. �

With v̂1 ≥ v̂2 and the expected utility from a flat-rate tariff being independent of
λ , one can conclude that a consumer of type λ1 has no incentive to choose the tariff
(0,LF) that is designed for consumers of type λ2. Finally, we show that type λ2 has
no incentive to mimic type λ1. Let vDEV

2 denote the expected utility of a consumer of
type λ2 who accepts the tariff (p̂, L̂) designed for type λ1.

CLAIM D.2. vDEV
2 < v̂2.

Proof. The expected utility of type λ2 from the tariff (p̂, L̂) equals the generated joint
surplus minus the profits of the firm he purchases from. Thus,

vDEV
2 = S2(p̂)− L̂− (p̂− c)

∫
θ̄

¯
θ

q̂2(θ , p̂) f (θ)dθ , (D.10)

where q̂2(θ , p) denotes the demand of type λ2 in the personal equilibrium. Inserting
the explicit formula of L̂ into (D.10) yields

vDEV
2 = S2(p̂)−Φ(v̂1)− (c− p̂)

∫
θ̄

¯
θ

[q̂1(θ , p̂)− q̂2(θ , p̂)] f (θ)dθ . (D.11)

Note that q̂1(θ , p̂) > q̂2(θ , p̂) for all θ ∈ Θ, since ∂λ q̂ < 0 if p > 0. By Proposition
D.1, c≥ p̂, and hence

vDEV
2 < S2(p̂)−Φ(v̂1). (D.12)

The expected utility of a consumer of type λ2 when choosing the tariff that is intended
for him can be expressed as follows,

v̂2 = S∗2−Φ(v̂2). (D.13)
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Hence, a deviation is not utility improving if

S∗2−Φ(v̂2)≥ S2(p̂)−Φ(v̂1) (D.14)

⇐⇒ [S∗2−S2(p̂)]+ [Φ(v̂1)−Φ(v̂2)]≥ 0 . (D.15)

The above inequality is satisfied since Φ′(·)≥ 0 and v̂1 ≥ v̂2. �

Thus, if the firms offer the optimal tariffs of the full information case, each type of
loss-averse consumer selects the tariff that is designed for him, which completes the
proof. �

As in the symmetric information case, if λ1 is below and λ2 is above the threshold
given by Σ(λ ) = c, then firms offer a measured tariff to the less loss-averse types and
a flat-rate tariff to the more loss-averse consumers. The fixed fee of the flat-rate tariff
is higher than the fixed fee of the measured tariff. In this case, we do not make any
claims about the uniqueness of this equilibrium.4 If the degree of loss aversion of both
types exceeds the threshold, then we obtain a pooling equilibrium: each firm offers
only a single tariff that is accepted by both types of consumers.

D.5. Examples of Discrete Choice Models

Hotelling Model with Linear Transport Cost.—Suppose consumers’ ideal brands are
uniformly distributed on the unit interval [0,1]. The brands of the two firms, A and
B, are located at the two extreme points, brand A at zero and brand B at one. A
consumer with ideal brand x∈ [0,1] has brand preferences ζ =(0,−tx,−t(1−x)). The
parameter t > 0 is a consumer’s “transport cost" per unit distance between his ideal
brand and the brand he purchases from. For the Hotelling specification, the market
share function takes the following form,

m(vA,vB) = min
{

1
2t
(t + vA− vB),

vA

t

}
. (D.16)

The market share function has to be modified if vA and vB differ by so much that
m(·) /∈ [0,1] (this never happens in equilibrium). Moreover, the Hotelling model has
the well-known drawback that market shares are kinked. If, however, the transport cost
is sufficiently low, then one can focus on the case where the market share function is
given by the first term of the above expression and thus well behaved. Formally, for
t ≤ (2/3)S∗2 it suffices to analyze a firm’s profit maximization problem for5

m(vA,vB) =
1
2t
(t + vA− vB). (D.17)

4. To analyze all equilibria we cannot apply the competition in utility space framework, since we have
to take the sorting constraints explicitly into account.

5. See Lemma 1 of Armstrong and Vickers (2001).
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Hence, ∂vAm(vA,vB) = (2t)−1 which immediately implies that

Φ(v)≡ m(v,v)
∂vAm(v,v)

= t. (D.18)

Obviously, Φ(·) is non-decreasing. Note that

∂vAm(vA,vB)

m(vA,vB)
=

1
t + vA− vB . (D.19)

It can easily be seen that the above fraction is increasing in vB. Thus, the Hotelling
model satisfies all imposed assumptions if the transport cost is sufficiently low. One
can check that the collusive utility level exists. To calculate the collusive utility level
one has to use the market share function given in (D.16).

Logit Demand Model.—An obvious drawback of the Hotelling specification is that a
firm does not compete with the rival and the outside option at the same time. A model
that accounts for this simultaneous competition on two fronts is the logit demand
model. Here, a consumer’s brand preferences ζ i for i = 0,A,B are i.i.d. according to
the double exponential distribution with mean zero and variance µ2π2/6, where π

(here) denotes the circular constant. Thus, the cumulative distribution function is

G(ζ i) = exp
{
−exp[−(γ +ζ

i/µ)]
}
, (D.20)

where γ is the Euler-Mascheroni constant and µ is a positive constant. With this
specification, the market share of firm A is given by (see Anderson et al., 1992)

m(vA,vB) =
exp[vA/µ]

exp[vA/µ]+ exp[vB/µ]+1
. (D.21)

The parameter µ captures the degree of heterogeneity among consumers with
respect to their brand preferences. Put differently, µ measures the degree of product
differentiation. A lower value of µ corresponds to a more competitive market. For
µ → ∞ the firms are local monopolists. Taking the partial derivative of (D.21) with
respect to vA yields

∂vAm(vA,vB) =
exp[vA/µ]{exp[vB/µ]+1}

µ{exp[vA/µ]+ exp[vB/µ]+1}2 . (D.22)

Thus,

m(vA,vB)

∂vAm(vA,vB)
=

µ{exp[vA/µ]+ exp[vB/µ]+1}
exp[vB/µ]+1

. (D.23)

Evaluating the above expression at vA = vB = v leads to

Φ(v) = µ
2exp[v/µ]+1
exp[v/µ]+1

. (D.24)
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Taking the derivative of Φ(·) with respect to v yields

Φ
′(v) =

exp[v/µ]

(exp[v/µ]+1)2 > 0. (D.25)

Moreover, the derivative of ∂vA m(vA,vB)/m(vA,vB) with respect to vB amounts to

d
dvB

[
∂vAm(vA,vB)

m(vA,vB)

]
=

1
µ2

exp[vB/µ]{exp[vB/µ]+1}
µ{exp[vB/µ]+ exp[vB/µ]+1}2 > 0. (D.26)

The collusive utility level ṽ maximizes m(v,v)π(v). Note that m(v,v)→ 0 for v→−∞

and π(v) ≤ 0 if v ≥ maxp{S(p)}. Thus, the collusive utility exists, since m(v,v)π(v)
is continuously differentiable.

Appendix E: Supplementary Material to Section 7.3: Loss Aversion in Both
Dimensions

Proof of Proposition 6. The monopolist maximizes the expected joint surplus by
choosing the unit price p. Given that the consumer plays the personal equilibrium
〈q̂(θ , p)〉 characterized by (18), the joint surplus is given by

S(p) =
∫

θ̄

¯
θ

{
u(q̂(θ , p),θ)− cq̂(θ , p)−λ

∫
θ

¯
θ

[
u(q̂(z, p),z)−u(q̂(θ , p),θ)

]
f (z) dz

−λ

∫
θ

¯
θ

p
[
q̂(θ , p)− q̂(z, p)

]
f (z) dz

}
f (θ) dθ . (E.1)

Taking the derivative of S(p) with respect to p and using the personal equilibrium
condition (18), we obtain

S′(p) = (p− c)
∫

θ̄

¯
θ

∂pq̂(p,θ) f (θ)dθ −λ

∫
θ̄

¯
θ

∫
θ

¯
θ

[q̂(p,θ)− q̂(p,z)] f (z) f (θ)dzdθ

(E.2)
For λ > 0 the optimal unit price fulfills p∗ ∈ [0,c), since S(p) is decreasing for prices
above the marginal cost. If the consumer is not loss averse, i.e., λ = 0, then p∗ = c.
Given that ∂qqqu(q,θ) ≥ 0 and λ ≤ 1, the joint surplus is a strictly concave function
for p≤ c. Formally,

S′′(p) =−(p−c)
∫

θ̄

¯
θ

∂qqqu(q̂(θ , p),θ)
[∂qqu(q̂(θ , p),θ)]3

f (θ)dθ +
∫

θ̄

¯
θ

1−λ [2F(θ)−1]
∂qqu(q̂(θ , p),θ)

f (θ)dθ < 0,

(E.3)
for p ≤ c. With the joint surplus being strictly concave, a flat-rate tariff is optimal
when S′(p)|p=0 ≤ 0, which is equivalent to

c≤ λ

∫
θ̄

¯
θ

∫
θ

¯
θ
[qS(θ)−qS(ϕ)] f (ϕ) f (θ)dϕdθ∫

θ̄

¯
θ

∂pq̂(θ , p) f (θ)dθ

≡ Σ(λ ). (E.4)

�
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Construction of a Personal Equilibrium.— Since a higher demand type is associated
with a stronger need for the good, we posit that demand is increasing in the type. For a
given quantity, higher types are worse off compared to lower types. We posit that this is
still the case in the personal equilibrium. Put differently, the increase in intrinsic utility
due to a higher consumption of a higher type does not outweigh the direct negative
effect on intrinsic utility of being a higher type. Formally, the second hypothesis with
respect to the personal equilibrium requires that the following inequality is satisfied:

∂qu(q̂(θ , p),θ)∂θ q̂(θ , p)+∂θ u(q̂(θ , p),θ)≤ 0. (E.5)

Given these hypotheses, the consumer’s utility can be written as

U(q|θ ,〈q̂(ϕ, p)〉) = u(q,θ)− pq−L−λ

∫
β (q)

¯
θ

[
u(q̂(z, p),z)−u(q,θ)

]
f (z) dz

−λ

∫
α(q)

¯
θ

p
[
q− q̂(z, p)

]
f (z) dz, (E.6)

where α(q) and β (q) are implicitly defined by6

q̂(α(q), p)≡ q and u(q̂(β (q)),β (q))≡ u(q,θ),

respectively. Under the hypotheses, α ′(q) > 0 and β ′(q) < 0. Differentiating (E.6)
with respect to q yields

U ′(q|θ ,〈q̂(ϕ, p)〉) = ∂qu(q,θ)[1+λF(β (q))]− p[1+λF(α(q))]. (E.7)

The utility function is strictly concave and thus the first-order condition is necessary
and sufficient for optimality. Moreover, in equilibrium it has to hold that α(q) =
β (q) = θ (cf. Equation (18) in the main text). Hence, the personal equilibrium is
characterized by ∂qu(q̂(θ , p),θ) = p. Obviously, the demand function characterized
by (18) is increasing in the demand type. The second hypothesis (E.5)—higher types
achieve lower utility levels in equilibrium—is also satisfied for relatively low marginal
prices, i.e., for

p≤ ∂qqu(q,θ)
∂θ u(q,θ)
∂qθ u(q,θ)

. (E.8)

(Personal) Equilibrium Selection.—A final comment to the personal equilibrium
selection is in order. There may exist multiple personal equilibria for the case analyzed
above. So far, we constructed only one personal equilibrium. It is reasonable to assume
that higher types demand more. Higher types have a higher marginal utility which
implies that a higher q increases the intrinsic utility in the good dimension and reduces
the loss in the good dimension more for a higher than for a lower type. Moreover, it
is reasonable to assume that higher types do not consume so much more such that
they achieve a higher intrinsic utility than lower types. Given a personal equilibrium

6. Strictly speaking, β (q) = β (q,θ)
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has to satisfy these features what would be the ex ante optimal plan—the choice
acclimating personal equilibrium (CPE)? Using integration by parts, the consumer’s
ex ante expected utility can be written as

Eθ [U(q|θ ,〈q̂(ϕ, p)〉) (E.9)

=
∫

θ̄

¯
θ

{
u(q(θ),θ)[1+λ (2F(θ)−1)]− p[1+λ (2F(θ)−1)]

}
f (θ) dθ .

As it is well-known in the literature, with CPE a decision maker is highly risk
averse and may prefer stochastically dominated options. This behavior can be ruled
out by assuming that loss utility is less important than intrinsic utility, i.e., λ ≤ 1. For
λ ≤ 1, the integrand in the expected utility is strictly concave in q(θ) for all θ . The
first-order condition obtained from point wise maximization is

∂qu(q(θ),θ) = p. (E.10)

Thus, at least for λ ≤ 1 the demand function (18) is the ex ante preferred plan among
all plans where higher types consume more but still achieve a lower intrinsic utility
level.

Appendix F: Comparison to the loss function of Kőszegi and Rabin (2006, 2007)

For applications, Kőszegi and Rabin (2006, 2007) propose the following gain-loss
function:

µ̃(x) =

{
η̃x, if x≥ 0,
η̃λ̃x, if x < 0.

The parameter η̃ ≥ 0 is the degree of reference dependence and λ̃ ≥ 1 is the degree of
loss aversion. (λ̃ = 1 means that the consumer is not loss averse.)

With loss utility only in the money dimension and reference-dependent
preferences (η̃ > 0), this formulation has the drawback that at the contracting stage,
the marginal rate of substitution (MRS) between money and consumption differs from
the MRS at the consumption stage. To see this, we rewrite µ̃ as

µ̃(x) = η̃x+

{
0, if x≥ 0,
η̃(λ̃ −1)x, if x < 0.

(F.1)

Consider a consumer who is not loss averse (λ̃ = 1) but has reference-dependent
preferences (η̃ > 0). Ex-post, his marginal utility of money is 1+ η̃ . Ex ante, however,
gains and losses cancel in expectation because the first part of the gain-loss function
in (F.1) is linear. Therefore, ex ante, the marginal utility of money is 1. This time-
inconsistency arises because we restrict reference-dependent utility to the money
dimension. If preferences were also reference dependent in the good dimension, utility
from consumption would also be multiplied by 1+ η̃ ex post, so that the marginal rate
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of substitution between money and the good would remain unchanged and equal to
the ex-ante MRS.

To avoid the shift in the MRS, we use the following modified loss function:7

µ(x) =

{
0, if x≥ 0,
λx, if x < 0.

If we set λ = η̃(λ̃ − 1), this corresponds to the second part of equation (F.1). This
formulation eliminates reference dependence for consumers that are not loss averse
because the first part of equation (F.1) was dropped. The ex ante expected utility of
a consumer is unchanged because it only depends on η̃(λ̃ − 1) (Compare equation
(7) in the main paper with equation (5) in an older working paper version, Herweg
(2010)). The same argument applies to the ex ante expected joint surplus. Therefore,
the condition for the optimality of a flat rate remains qualitatively unchanged between
the different formulations.8

Since we do not want to model time-inconsistency, the new formulation which
holds the MRS constant, is the natural choice. Also, this formulation is closer to the
original formulation of Kőszegi and Rabin (2006, 2007) with loss aversion in both
dimensions, because this formulation also has a stable MRS.
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