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1. Introduction

The analysis of decision making under risk has always been and still is a core topic

in microeconomics. The neo-classical workhorse model is expected utility theory

(EUT), which was first introduced into the scientific discourse by Bernoulli (1738).

As was shown two centuries later by von Neumann and Morgenstern (1947), EUT

rests on the assumption that a decision maker’s preferences satisfy a small set of

(at least apparently) appealing properties, so-called axioms, which makes EUT hard

to criticize from a normative point of view. From a positive perspective, however,

already Allais (1953) pointed out that EUT fails to predict a significant share of

observed individual choices and, as a consequence, also average behavior in a variety

of choice situations.

Given the descriptive difficulties of EUT, it is hardly surprising that over the

years plenty “competing” alternative theories for decision making under risk have

been proposed. It seems safe to say that the most prominent of these non-EUT

alternatives is prospect theory as proposed by Kahneman and Tversky (1979), which

rests on the three main building blocks of probability weighting, reference depen-

dence, and loss aversion. Other non-EUT alternatives, which are widely recognized

in economics, are, for example, disappointment theory (Loomes and Sugden, 1986;

Bell, 1985), generalized expected utility theory (Machina, 1982), rank-order the-

ory (Quiggin, 1982; Yaari, 1987), and expectation-based loss aversion (Kőszegi and

Rabin, 2007). All these theories of choice under risk are prospect-based theories,

meaning that the utility value assigned to a given risky choice option, a so-called

prospect, is determined by the properties of this prospect alone. Notably, all of

the aforementioned non-EUT alternatives rationalize the classic Allais paradoxes by

relaxing the independence axiom as introduced by von Neumann and Morgenstern

(1947).

With regret theory Bell (1982) and Loomes and Sugden (1982, 1987a) quite early

proposed “[a] bold alternative to the[se] alternatives” (Bleichrodt and Wakker, 2015,

p.493)—“bold” because they relaxed the transitivity axiom rather than the indepen-

dence axiom.1 Regarding the pairwise choice between two prospects, regret theory

posits that, after uncertainty about the true state of the world has been resolved, the

utility derived from receiving the chosen alternative’s outcome in that state depends

not only on this outcome alone, but also on the outcome that the other prospect,

which was not chosen, would have yielded in the realized state of the world. If the

decision maker had done better by choosing differently, she suffers from regret.2 If

1A fairly similar model was contemporaneously proposed by Fishburn (1982).
2As noted by Bleichrodt and Wakker (2015, p.494), “the linguistic and psychological concepts of
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she had done worse by choosing differently, she rejoices. The anticipation of these

ex post feelings of regret and rejoicing, which arise from within-state comparison of

outcomes across choice options, is hypothesized to be factored into ex ante decision

making. More precisely, it is presumed that the decision maker has a desire ex ante

to avoid ex post feelings of regret. Notably, regret theory assumes that the deci-

sion maker perceives the occurrence probabilities of the different states of the world

correctly and without any distortion.

Thirty years after the introduction of regret theory, with salience theory as pro-

posed by Bordalo, Gennaioli, and Shleifer (2012) a new contender entered the com-

petition for the title of a viable theory for choice under risk. Starting out from the

observation that the assumptions imposed on prospect theory’s probability weight-

ing function were primarily inspired by the empirical regularities that Kahneman

and Tversky (1979) sought to explain, Bordalo, Gennaioli, and Shleifer (2012) pro-

pose a novel parsimonious approach of probability weighting which is based on the

widely acknowledged idea from the psychological literature that salience exerts a di-

rectional pull on attention.3 Specifically, with regard to pairwise choice under risk,

salience theory posits that a decision maker’s attention is drawn to those states of

the world in which the respective payoff combination of the two feasible prospects

stands out (i.e., is salient). This directional influence on attention is hypothesized

to lead to the decision maker placing disproportionally much (little) weight on (i.e.,

over-weighing (under-weighing) the occurrence probability of) those states of the

world in which the outcomes of the two prospects are very different (rather similar).

While the respective psychological motivation underlying regret theory and salience

theory is different, the two theories share that within-state comparisons of outcomes

are a key determinant of choice behavior. Given this similarity, it is not surprising

that both theories have a large overlap when it comes to their explanatory poten-

tial. Both regret theory and salience theory can explain the common consequence

effect and the common ratio effect, which go back to Allais (1953).4 Furthermore,

both theories can rationalize the reflection effect identified by Kahneman and Tver-

sky (1979), the preference reversal phenomenon documented by Grether and Plott

(1979), as well as the inherent instability of risk attitudes (as reflected in the simul-

taneous preference for gambling and insurance or in the so-called four-fold pattern

in Tversky and Kahneman (1992)). Given the significant overlap in choice patterns

regret have existed for ages and have been studied in psychology for over a century [...].” For
references on this statement, see Zeelenberg and Pieters (2007).

3Smith and Mackie (2007, p.63) define salience as “the ability of a cue to attract attention in its
context”.

4Notably, both theories predict these effects to be driven by correlation effects (or, more precisely,
juxtaposition effects) rather than by probability effects.
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that can be explained by both regret theory and salience theory, we believe it to

be desirable (if not even imperative) to aim for a thorough analytical comparison of

these two theories.5

The paper is structured as follows: In Section 2, we describe the general struc-

ture of the choice problem under consideration and explain both regret theory and

salience theory. We define a generalized notion of salience theory that encompasses

the prominent notions introduced by Bordalo, Gennaioli, and Shleifer (2012). Sec-

tion 3 contains our first main result: salience theory is a special case of general

regret theory (Loomes and Sugden, 1987a). In Section 4, we carve out the relation

of salience theory and the original (more restrictive) formulation of regret theory

(Loomes and Sugden, 1982) in more detail. Specifically, we show that salience the-

ory is a special case of original regret theory if the assumption of regret aversion is

relaxed. In order to derive this finding, we build heavily on the recent axiomatic foun-

dation of original regret theory proposed by Diecidue and Somasundaram (2017);

i.e., we show that salience theory satisfies all the axioms imposed by Diecidue and

Somasundaram (2017). Furthermore, we find that predictions under salience theory

which are driven by salience theory’s assumption of diminishing sensitivity can also

be derived under reasonable specifications (i.e., specifications that allow for regret

aversion) of original regret theory. In Section 5, we discuss the implications of our

findings for future theoretical and experimental research. Section 6 concludes.

2. Two Context-Dependent Theories for Pairwise Choice under Risk

Consider a decision maker who faces the choice between two risky choice options (or,

prospects) Lx and Ly. The prospects Lx and Ly can be described based on the finite

state space S = {1, . . . , S}, where the occurrence probability of state s is πs ∈ (0, 1).

The S different states of the world are mutually exclusive such that
∑S

s=1 πs =

1. Let Π = (π1, . . . , πS) denote the vector of occurrence probabilities. Prospect

Li (i = x, y) assigns to each state of the world s ∈ S a monetary consequence

(i.e., an increment or a decrement of the decision maker’s wealth). Hence, Lx =

(x1, . . . , xS) ∈ RS and Ly = (y1, . . . , yS) ∈ RS. We summarize this pairwise choice

situation as 〈S,Π, Lx, Ly〉.6

5 Loomes and Sugden (1982) show that regret theory can explain the common ratio, common
consequence, isolation, and reflection effects as well as the simultaneous preferences for gambling
and insurance. That regret theory can also rationalize the preference reversal phenomenon is
shown by Loomes and Sugden (1983). Bordalo, Gennaioli, and Shleifer (2012) show that all
the aforementioned choice patterns can be explained by salience theory.

6Throughout the paper, we restrict attention on pairwise choice problems, which, we believe,
captures the true spirit in which Loomes and Sugden (1982, 1987a) proposed regret theory
and Bordalo, Gennaioli, and Shleifer (2012) proposed salience theory. We comment on this
limitation in Section 6.
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With our focus on purely monetary consequences, in all that follows we impose

the rather uncontroversial assumption that the decision maker’s preferences over

pure consequences are monotonic in the following sense: Suppose that the decision

maker faces an exogenously imposed change of her initial wealth position in which

she has no say at all (i.e., there is no decision to make). Then the decision maker

weakly prefers the exogenous change to be the amount x rather than the amount y

if and only if x is at least as large as y.7

2.1. Regret Theory

We consider regret theory as defined by Loomes and Sugden (1982, 1987a). Suppose

the decision maker chooses prospect Lx. If state s ∈ S realizes, she obtains outcome

xs. She knows she would have received ys if she had chosen differently, namely

prospect Ly. According to regret theory, given the choice of prospect Lx, in state

s the decision maker therefore has a composite experience based on obtaining xs

and missing out on ys. The Benthamite or Bernouillian utility associated with this

composite experience based on obtaining xs and missing out on ys is denoted by

M(xs, ys), where M : R× R→ R.

Regret theory postulates that the value assigned to choosing prospect Lx is given

by

V RT (Lx) =
S∑
s=1

πs M(xs, ys). (1)

In consequence,

Lx � Ly ⇐⇒
S∑
s=1

πs Ψ(xs, ys) ≥ 0, (2)

where the function Ψ : R × R → R is defined as Ψ(x, y) ≡ M(x, y) −M(y, x). In

order to explain certain EUT anomalies and to be consistent with the underlying

psychological foundation, Loomes and Sugden (1987a) require the function Ψ(·, ·) to

display the following properties:

Assumption 1. The function Ψ(·, ·) satisfies the following properties:

(SS) Skew symmetry: For all x, y ∈ R, Ψ(x, y) = −Ψ(y, x).8

7Formally, we assume that there exists a rational (i.e., complete, reflexive, and transitive) prefer-
ence ordering �PC on the set of pure consequences R, such that the following hold: x �PC y if
and only if x ≥ y. Our analysis can readily be extended to allow for non-monetary outcomes.
Then, a rational preference ordering over all possible pure consequences is required.

8With Ψ(x, y) = M(x, y)−M(y, x), skew symmetry holds by construction. However, as we build
the upcoming analysis on the function Ψ(x, y) without alluding to its particular construction,
we treat skew symmetry as a property in its own right. Furthermore, note that skew symmetry
implies Ψ(x, x) = 0.
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(OPC) Ordering of pure consequences: For all x, y ∈ R, x ≥ y if and only if

Ψ(x, y) ≥ 0.9

(I) Increasingness: For all x, y, z ∈ R, Ψ(x, y) Q 0 if and only if Ψ(x, z) Q Ψ(y, z).

(C) Convexity: For all x, y, z ∈ R, if Ψ(x, y) > 0 and Ψ(y, z) > 0 and Ψ(x, z) > 0,

then Ψ(x, z) > Ψ(x, y) + Ψ(y, z).10

Strictly spoken, as outlined by Loomes and Sugden (1987a), the most basic defini-

tion of of a regret-theoretic representation of preferences would require the function

Ψ(·, ·) to satisfy only (SS). The properties (OPC), (I), and (C), however, not only

seem reasonable but also imply that regret theory can account for the observed choice

behavior incompatible with EUT, which inspired regret theory in the first place. In

particular, the convexity requirement (C) embodies the commonly accepted idea of

regret aversion in the sense that experiencing two separate regretful outcomes pains

the decision maker less than experiencing a single regretful outcome of the same

overall magnitude. This is the reason why property (C) is also called regret-aversion

(Loomes, Starmer, and Sugden, 1991). Therefore, we make the full set of properties

listed in Assumption 1 part of the following definition of generalized regret theory.

Definition 1 (Generalized Regret Theory). The decision maker acts in accordance

with generalized regret theory if there is a function Ψ : R × R → R that satisfies

(SS), (OPC), (I), and (C), such that for any pairwise choice situation 〈S,Π, Lx, Ly〉
the following holds:

Lx � Ly ⇐⇒
S∑
s=1

πs Ψ(xs, ys) ≥ 0. (3)

In their seminal contribution Loomes and Sugden (1982) consider a simpler (and,

thus, more restrictive) form of regret theory.11 Specifically, they assume that Ψ(x, y) =

Q(c(x)− c(y)), where the strictly increasing function c : R→ R denotes “choiceless

utility”; i.e., c(x) denotes the purely hedoncic pleasure experienced from obtaining x

9Not restricting their focus on purely monetary consequences, Loomes and Sugden (1987a, p.273)
defined property (OPC) as follows: “There is a complete, reflexive and transitive preference
relation � on the set [of pure outcomes] X such that for all [x, y ∈ X : x � y ⇐⇒ Ψ(x, y) ≥ 0].
Our focus on purely monetary consequences, paired with the assumption of monotonicity of
preferences regarding pure consequences, allows us to restate this definition equivalently in the
more convenient version above.

10When restricting attention to monetary outcomes, property (I) can also be stated as Ψ(x, y)
being strictly increasing in its first argument. As noted by Loomes, Starmer, and Sugden
(1991, footnote #6), this property is implied by property (C). Here, to facilitate comparability
with the original contributions, we state the full set of properties as listed in Loomes and Sugden
(1987a).

11According to Bleichrodt and Wakker (2015) this more tractable representation is the most pop-
ular special case used in the literature on regret theory.
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without having made a choice that led to obtaining x. Hence, under original regret

theory choice is assumed to be determined only by differences in choiceless utilities.

The function Q : R→ R, which is also referred to as regret function, is assumed to

display the following properties:

Assumption 2. The function Q : R → R is continuous and satisfies the following

properties:

(SS ′) Skew symmetry: For all ∆ ∈ R, Q(∆) = −Q(−∆).12

(I ′) Increasingness: For all ∆ ∈ R, Q(∆) is strictly increasing.

(C ′) Convexity: For all ∆ ∈ R>0, Q(∆) is strictly convex.

As before, the most basic definition of original regret theory would not impose

the convexity requirement (C′) to be satisfied. As is carefully argued by Loomes

and Sugden (1982), property (C′) is needed for original regret theory to capture

the observed empirical regularities, which is why we include property (C′) in the

following definition of original regret theory.13

Definition 2 (Original Regret Theory). The decision maker acts in accordance

with original regret theory if there is a strictly increasing function c : R → R and

a continuous function Q : R → R that satisfies (SS ′), (I ′), and (C ′), such that for

any pairwise choice situation 〈S,Π, Lx, Ly〉 the following holds:

Lx � Ly ⇐⇒
S∑
s=1

πs Q(c(xs)− c(ys)) ≥ 0. (4)

2.2. Salience Theory

The key idea of salience theory is that the decision maker’s attention is invariably

drawn to states with salient (i.e., outstanding) payoff combinations and that this

directional influence on attention blurs the perception of the objective occurrence

probabilities of the different states of the world. More specifically, it is hypothesized

that the objective occurrence probability of a state with a very salient (non-salient)

payoff combination is inflated (deflated). When evaluating prospect Lx, the salience

of a state s with payoff combination (xs, ys) is denoted by σ(xs, ys), where the

function σ : R× R→ R is the so-called salience function.

Bordalo, Gennaioli, and Shleifer (2012) propose two mechanisms, rank-based

salience theory and smooth salience theory, for how differences in the salience of

12Note that skew symmetry implies Q(0) = 0.
13If Q(·) is linear, original regret theory coincides with EUT.
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payoff combinations might translate into a blurred perception objective occurrence

probabilities along the lines mentioned above. Here, we present a slightly more

general version of this probability distortion which allows us to address both rank-

based salience theory and smooth salience theory (and, at least potentially, other

so far unexplored salience-based mechanisms of probability distortions) in a single

analytical framework. Specifically, when evaluating lottery Lx, the decision weight

attached to state s with outcome xs under lottery Lx and ys under lottery Ly is

given by

π̂xs =
f(σ(xs, ys))∑S

r=1 f(σ(xr, yr))πr
πs, (5)

where f(·) : R → R≥0 is a strictly increasing function.14 Essentially, the idea is

that the objective occurrence probability of state s is inflated (deflated) if the (f -

transformed) salience of outcome combination (xs, ys) is higher (lower) than the aver-

age (f -transformed) salience of all possible outcome combinations (x1, y1), . . . , (xS, yS).

Below we explain in detail how to translate rank-based salience theory and smooth

salience theory into this framework.

The value that the decision maker attaches to prospect Lx then is given by

V ST (Lx) =
S∑
s=1

π̂xs v(xs), (6)

where v : R → R is a strictly increasing value function with v(0) = 0. In conse-

quence,

Lx � Ly ⇐⇒
n∑
s=1

[π̂xs v(xs)− π̂ys v(ys)] ≥ 0. (7)

According to Bordalo, Gennaioli, and Shleifer (2012) the salience function σ(·, ·)
displays the following properties:

Assumption 3. The function σ(·, ·) is continuous and bounded and satisfies the

following properties:

(S) Symmetry: For all x, y ∈ R, σ(x, y) = σ(y, x).

(MS) Minimal salience of states with identical payoffs: For all x, y, z, z′ ∈ R with

x 6= y, σ(z, z) = σ(z′, z′) < σ(x, y).

14One might wonder why we allow for f(σ) = 0 as this entails that states with a strictly positive
occurrence probability may be assigned a decision weight equal to zero. With f(·) being strictly
increasing, this can only be the case for the least salient states. As will become clear after the
statement of Assumption 3, the least salient states are those in which both prospects yield the
same outcome. And as can be seen from equation (8), states with identical outcomes have
no impact on the decision maker’s choice between Lx and Ly. Therefore, it is without loss of
generality to allow for f(σ) = 0.
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(O) Ordering: For all x, y, x′, y′ ∈ R,

if [min{x, y},max{x, y}] ⊂ [min{x′, y′},max{x′, y′}], then σ(x, y) < σ(x′, y′).

(DS) Diminishing sensitivity: For all x, y ∈ R>0 with x 6= y, σ(x+ε, y+ε) < σ(x, y)

for all ε > 0.

(R) Reflection: For all x, y, x′, y′ ∈ R>0, σ(x, y) < σ(x′, y′) if and only if

σ(−x,−y) < σ(−x′,−y′).

As noted by Bordalo, Gennaioli, and Shleifer (2012, p.1250), “[t]he key properties

driving our explanation of anomalies are ordering and diminishing sensitivity,” which

reflect contrast and level effects, respectively. The reflection property (R) only plays

a role in the explanation of the reflection effect. The properties (S) and (MS) are

assumed implicitly throughout the analysis of pairwise choice in Bordalo, Gennaioli,

and Shleifer (2012), which is why we made these properties explicit part of the

following definition of salience theory.15,16 Symmetry of the salience function implies

that π̂xs = π̂ys ; i.e., the decision weight attached to state s does not depend on which

prospect the decision maker evaluates. Hence, we can define generalized salience

theory as follows:

Definition 3 (Generalized Salience Theory). The decision maker acts in accordance

with generalized salience theory if there is a strictly increasing function f : R→ R≥0,

a continuous and bounded function σ : R × R → R that satisfies (S), (MS), (O),

(DS), and (R), and a strictly increasing function v : R→ R with v(0) = 0 such that

Lx � Ly ⇐⇒
S∑
s=1

πs f(σ(xs, ys))[v(xs)− v(ys)] ≥ 0. (8)

With smooth salience theory and rank-based salience theory, Bordalo, Gennaioli,

and Shleifer (2012, p.1251-1252, 1255) propose two formalizations of how a salience-

biased perception of the odds translates into decision weights compatible with the

general formulation in equation (5). Here, we briefly explain both these approaches.

Under smooth salience theory, when evaluation prospect Lx, the decision maker

transforms the odds πs′/πs into π̂xs′/π̂
x
s , where

π̂xs′

π̂xs
= δ[(−σ(xs′ ,ys′ ))−(−σ(xs,ys))] · πs

′

πs
, (9)

15Bordalo, Gennaioli, and Shleifer (2012, p.1250) refer to the symmetry requirement (S) as “a
natural property in the case of two lotteries [...]”.

16At first glance, property (MS) might seem at odds with the definition of diminishing sensitivity
in Definition 1 in Bordalo, Gennaioli, and Shleifer (2012, p.1249). Key here is that the definition
of diminishing sensitivity in Bordalo, Gennaioli, and Shleifer (2012) does not require x and y
to be different. As becomes clear from the proof of Lemma 2 on p.6 in the Web-Appendix of
Bordalo, Gennaioli, and Shleifer (2012) as well as from the statement that the salience function
σ(x, y) = |x − y|/(|x| + |y| + θ) satisfies diminishing sensitivity, the definition of diminishing
sensitivity in Bordalo, Gennaioli, and Shleifer (2012) indeed (implicitly) requires x and y to be
different.
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with δ ∈ (0, 1) denoting the (inverse) degree of the salience induced distortion.17

Intuitively, if the outcome combination in state s′ is more (less) salient than the

outcome combination in state s, i.e., if σ(xs′ , ys′) > (<) σ(xs, ys), then the objective

odds πs′/πs are perceived as inflated (deflated). Furthermore, the salience-induced

decision weights are required to sum to unity, i.e.,
∑S

s=1 π̂
x
s = 1. Together, these con-

ditions can be solved for the n salience-induced decision weights. Specifically, fixing

s ∈ {1, . . . , S}, adding up condition (9) for all s′ = 1, . . . , S yields the following:18

S∑
s′=1

π̂xs′

π̂xs
=

S∑
s′=1

(
δ{−σ(xs′ ,ys′ )−[−σ(xs,ys)]} · πs

′

πs

)
⇐⇒ π̂xs =

δ−σ(xs,ys)∑S
s′=1 δ

−σ(xs′ ,ys′ )πs′
·πs

(10)

To formalize how salience distorts the perception of objective occurrence proba-

bilities under rank-based salience theory, let Γ = 〈S, Lx, Ly〉 denote the probability-

independent aspect of the pairwise choice problem under consideration. The salience

rank of state s, which results in payoff combination (xs, ys), when evaluating prospect

Lx is denoted by kx(σ(xs, ys)|Γ) ∈ N>0. The salience ranking of the states 1, . . . , S

starts at 1, has no jumps, and kx(σ(xs, ys)|Γ) Q kx(σ(xs′ , ys′)|Γ) if and only if

σ(xs, ys) R σ(xs′ , ys′). Notably, the salience ranking is decision-problem specific; i.e,

while the value of the salience function σ(·, ·) for outcome combination (xs, ys) does

not depend on Γ, the assigned salience rank does. In analogy to smooth salience

theory, the decision maker transforms the odds πs′/πs according to (9) but with

δ[(−σ(xs′ ,ys′ ))−(−σ(xs,ys))] being replaced by δk
x(σ(xs′ ,ys′ )|Γ)−kx(σ(xs,ys)|Γ). Together with

the requirement of decision weights summing up to unity, this distortion of odds

results in the following decision weight attached to state s:

π̂xs =
δk

x(σ(xs,ys)|Γ)∑S
s′=1 δ

kx(σ(xs′ ,ys′ )|Γ)πs′
· πs (11)

As previously explained, symmetry of the salience function σ(·, ·) implies that

π̂xs ≡ π̂ys under both smooth and rank-based salience theory. Comparison of (10)

and (11) with (5) allows for the following observation:

Proposition 1. Generalized salience theory encompasses smooth salience theory

(with f(σ) = δ−σ) and rank-based salience theory (with f(σ) = δk(σ|Γ)).

Proof. See Appendix A.

17If δ = 1, salience theory coincides with EUT.
18We are thankful to two of our master students, Maximilian Fiedler and Fabio Römeis, for pre-

senting this nicely streamlined proof of the logic underlying Definition 2 in Bordalo, Gennaioli,
and Shleifer (2012) in one of our master seminars.
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As outlined before, both smooth and rank-based salience theory are based on the

premise that differences in the salience of outcome combinations distort the deci-

sion maker’s perception of odds. The advantage of rank-based salience theory is

its analytical tractability in pairwise choice problems with only few outcome com-

binations, as in the analysis of the common consequence effect or the common ratio

effect in Bordalo, Gennaioli, and Shleifer (2012). Here, rank-based salience theory

(unlike smooth salience theory) allows for a crisp characterization of choice behavior

in terms of the salience parameter δ. As, however, already noted by Bordalo, Gen-

naioli, and Shleifer (2012, p.1255), the discrete nature of rank-based salience theory

leads to “states with similar [though not identical] salience obtain[ing] very different

weights,” which may create discontinuities in valuation. As later formally analyzed

by Kontek (2016), these discontinuities in valuation under rank-based salience the-

ory entail that a prospect’s certainty equivalent may be not well defined. With the

main findings in Bordalo, Gennaioli, and Shleifer (2012) holding under both for-

malizations, from our point of view, the answer to the question whether to apply

smooth or rank-based salience theory is based on trading off analytical convenience

and conceptual coherence.

3. The Main Result: General Regret Theory and Salience Theory

In order to compare the two theories, we define the function ΨST : R2 → R as follows

ΨST (x, y) ≡ f(σ(x, y))[v(x)− v(y)], (12)

with f(·), σ(·, ·) and v(·) satisfying the properties listed in Definition 3.

Theorem 1. If the decision maker behaves according to generalized salience theory

with functions v(·), σ(·, ·) and f(·), then the decision maker behaves according to

generalized regret theory with function Ψ(·, ·) = ΨST (·, ·).

Proof. To prove the statement, it is sufficient to show that the function ΨST (·, ·)
satisfies the (SS), (OPC), (I), and (C).

(i) ΨST (·, ·) satisfies (SS).

Skew-symmetry follows immediately from σ(·, ·) satisfying (S):

ΨST (x, y) = f(σ(x, y))[v(x)− v(y)]

= −f(σ(y, x))[v(y)− v(x)]

= −ΨST (y, x)
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(ii) ΨST (·, ·) satisfies (OPC).

Ordering of pure prospects follows immediately from v(·) being strictly in-

creasing and f(·) being weakly positive and strictly increasing:

ΨST (x, y) > 0 ⇐⇒ f(σ(x, y))[v(x)− v(y)] > 0

⇐⇒ f(σ(x, y)) > 0 ∧ v(x)− v(y) > 0

⇐⇒ x > y

ΨST (x, y) = 0 ⇐⇒ f(σ(x, y))[v(x)− v(y)] = 0

⇐⇒ f(σ(x, y)) = 0 ∨ v(x)− v(y) = 0

⇐⇒ x = y

(iii) ΨST (·, ·) satisfies (I).

Step 1: First, we establish the “=⇒” direction. To this end, note that

ΨST (aj, cj) R ΨST (bj, cj) if and only if

f(σ(x, z))[v(x)− v(z)] R f(σ(y, z))[v(y)− v(z)] (13)

If ΨST (x, y) = 0, then, by (OPC), we have x = y, in which case ΨST (x, z) =

ΨST (y, z) holds trivially.

If ΨST (x, y) > 0, then, by (OPC), y < x and we have to distinguish three

cases. First, suppose that z ≤ y. Then 0 ≤ v(y)− v(z) < v(x)− v(z) because

v(·) is strictly increasing. Furthermore, by (O), σ(y, z) < σ(x, z). As f(·) is

weakly positive and strictly increasing, we have 0 ≤ f(σ(y, z)) < f(σ(x, z)),

such that (13) implies ΨST (x, z) > ΨST (y, z). Second, suppose that y < z ≤
x. Then v(y) − v(z) < 0 ≤ v(x) − v(z) because v(·) is strictly increasing.

Furthermore, as f(·) is weakly positive and strictly increasing, f(σ(y, z)) > 0

and f(σ(x, z)) ≥ 0, such that (13) implies ΨST (x, z) > ΨST (y, z). Third,

suppose that x < z. Then v(y) − v(z) < v(x) − v(z) < 0 because v(·) is

strictly increasing. Furthermore, by (O), σ(x, z) < σ(y, z). As f(·) is weakly

positive and strictly increasing, 0 < f(σ(x, z)) < f(σ(y, z)), such that (13)

implies ΨST (x, z) > ΨST (y, z).

If ΨST (x, y) < 0, then, by (OPC), we have x < y. By reasoning in analogy to

the case before, one can establish that ΨST (x, z) < ΨST (y, z).
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Step 2: Next, we establish the “⇐=” direction. To this end, note that[
ΨST (x, z) > ΨST (y, z) =⇒ ΨST (x, y) > 0

]
⇐⇒

[
¬[ΨST (x, y) > 0] =⇒ ¬[ΨST (x, z) > ΨST (y, z)]

]
⇐⇒

[
¬[x > y] =⇒ ΨST (y, z) ≥ ΨST (x, z)

]
⇐⇒

[
y ≥ x =⇒ ΨST (y, z) ≥ ΨST (x, z)

]
,

where the third equivalence holds by (OPC) and the fourth equivalence holds

by Step 1. Reversing the roles of x and y allows to immediately establish that

ΨST (x, z) < ΨST (y, z) =⇒ ΨST (x, y) < 0. Finally,[
ΨST (x, z) = ΨST (y, z) =⇒ ΨST (x, y) = 0

]
⇐⇒

[
¬[ΨST (x, y) = 0] =⇒ ¬[ΨST (x, z) = ΨST (y, z)]

]
⇐⇒

[
¬[x = y] =⇒ ΨST (x, z) 6= ΨST (y, z)

]
⇐⇒

[
x 6= y =⇒ ΨST (x, z) 6= ΨST (y, z)

]
,

where the third equivalence holds by (OPC) and the fourth equivalence holds

by Step 1.

(vi) ΨST (·, ·) satisfies (C).

By (OPC),

Ψ(x, y) > 0 ∧Ψ(y, z) > 0 ∧Ψ(x, z) > 0

⇐⇒ z < y < x.

Furthermore,

ΨST (x, z) > ΨST (x, y) + ΨST (y, z)

⇐⇒ [f(σ(x, z))− f(σ(x, y))][v(x)− v(y)]

> [f(σ(y, z))− f(σ(x, z))][v(x)− v(z)]

Hence, to establish convexity of ΨST (·, ·) it is sufficient to show that the fol-

lowing holds:

z < y < x =⇒ [f(σ(x, z))− f(σ(x, y))][v(x)− v(y)]

> [f(σ(y, z))− f(σ(x, z))][v(y)− v(z)] (14)

To see that (14) holds, note the following: first, v(x) − v(y) > 0 and v(y) −
v(z) > 0 by v(·) strictly increasing; second, σ(x, z) > max{σ(x, y), σ(y, z)} by

(O); third, f(·) is strictly increasing.

12



Theorem 1 establishes that generalized salience theory is a special case of general-

ized regret theory: If a preference relation allows for a representation by generalized

salience theory, then the same preference relation also allows for a representation by

generalized regret theory. The result is established by equating the function Ψ(x, y)

with the function ΨST (x, y) = f(σ(x, y))[v(x)− v(y)] and showing that the assump-

tions imposed by salience theory guarantee that ΨST (x, y) satisfies the assumptions

imposed by generalized regret theory. In a nutshell, property (S) of function σ(·, ·)
immediately translates into property (SS) of function ΨST (·, ·) and the property

(O) of function σ(·, ·) ensures that function ΨST (·, ·) satisfies the properties (I) and

(C).19 Finally, the assumptions imposed on the functions v(·) and f(·) guarantee

that ΨST (·, ·) displays property (OPC). Notably, to establish Theorem 1, only two

of the properties imposed on the salience function σ(·, ·) are needed—symmetry and

ordering. The second of salience theory’s core assumptions, property (DS), is not

needed at all. Hence, salience theory imposes more assumptions and, thus, has more

predictive power than generalized regret theory. In particular, the assumption of di-

minishing sensitivity seems to be a key difference. We will investigate these issues

further in Section 4.

According to Theorem 1, for any specification of generalized salience theory (i.e.,

for any specific functions v(·), σ(·, ·), and f(·)), there is a corresponding function

Ψ(·, ·) that predicts exactly the same behavior in any pairwise choice problem.20 As

outlined in Subsection 2.2, under smooth salience theory we have f(σ) = δ−σ. In

consequence, even though the decision weights π̂1, . . . , π̂S are specific to the pairwise

choice situation under consideration, the function ΨST (x, y) = δ−σ(x,y)[v(x) − v(y)]

is not. More specifically, while the decision weight π̂s attached to state s ∈ S
according to (5) depends on the outcome combinations of all the other states s′ 6= s

and therefore on the exact specification of the two prospects Lx and Ly, the salience-

related part of function ΨST (x, y) = δ−σ(x,y)[v(x)− v(y)] depends only on the value

of the salience function at outcome combination (x, y), which, for a given salience

function σ(·, ·), is invariant to the exact specification of the choice problem. Clearly,

19In the light of footnote #9 it is not surprising that one and the same property of function
σ(·, ·), namely (O), implies that ΨST (·, ·) satisfies both (I) and (C). That property (O) of
salience theory has similar implications than the property convexity of regret theory is already
conjectured by Bordalo, Gennaioli, and Shleifer (2012).

20For example, a specification of salience theory could prescribe a function v(·) that satisfies the
properties of a “typical” value function as stated in Bowman, Minehart, and Rabin (1999), the
salience function σ(x, y) = |x−y|/(|x|+ |y|+θ) with θ > 0, as proposed by Bordalo, Gennaioli,
and Shleifer (2012) and often used in subsequent applications, and function f(σ) = δ−σ or
f(σ) = δk(σ|Γ), which correspond to smooth or rank-based salience theory, respectively (cf.
Proposition 1).
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this resonates well with the usual understanding of general regret theory that there is

a “universal” function Ψ(·, ·) that applies to each and every pairwise choice problem

that one can think of.

The picture looks slightly different under rank-based salience theory. Here, as

outlined in Subsection 2.2, also the salience rank k(σ(xs, ys)|Γ) of state s itself is

choice-problem specific (where Γ = 〈S, Lx, Ly〉 captures the probability-independent

aspect of the pairwise choice problem under consideration). In other words, with

rank-based salience theory, not only the decision weight π̂s assigned to state s but

also the “absolute salience weight” of state s, f(σ), is choice-problem specific. As a

consequence, and in contrast to smooth salience theory, this choice-problem speci-

ficity does not vanish in pairwise comparison, such that under rank-based salience

theory the function ΨST (x, y) = δk(σ(x,y)|Γ)[v(x) − v(y)] is choice-problem specific.

This clearly is a rather uncommon interpretation of the function Ψ(·, ·) in regret the-

ory, which becomes particularly relevant when interpreting comparative static results

or variations of experimental treatments that involve any changes in Γ, because such

changes potentially affect the salience ranking. Changes in Π (i.e., in the probability

distribution over states and, thus, the correlation between the two prospects), on

the other hand, pose no such complication because the states’ salience ranking is

left unchanged (as long as all occurrence probabilities remain strictly positive); i.e.,

given Γ, the function ΨST (·, ·) is invariant to changes in Π.

Before the backdrop of this seeming limitation of our Theorem 1 with regard

to rank-based salience theory, we consider it warranted to emphasize two obser-

vations. First, while extensively relying on rank-based salience theory, Bordalo,

Gennaioli, and Shleifer (2012, p.1255) acknowledge that the “assumption of rank-

based discounting buys us analytical tractability, but our main results also hold if

the distortion of the odds [...] is a smooth increasing function of the salience differ-

ences [...].” Second, and more importantly, the function ΨST (·, ·) under rank-based

salience theory is invariant in the classic scenarios of the common ratio effect and

the common consequence effect (in both the stochastic independent version and the

correlated version), which makes generalized regret theory and rank-based salience

theory impossible to distinguish in these scenarios.21

21To be precise, this statement does not hold for (what Bordalo, Gennaioli, and Shleifer (2012)
would refer to as) perfect negative correlation of the riskier and the safer prospect. The reason
is that under perfect negative correlation a state with an intermediate salience rank becomes
impossible, which changes the difference in salience ranks between states and, thus, the function
ΨST (·, ·). The qualitative predictions, however, are not affected by this discontinuity embodied
in rank-based salience theory.
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4. Further Insights: Original Regret Theory and Salience Theory

As we have shown in Section 3, all choice patterns that can be rationalized by

salience theory can also be rationalized by generalized regret theory. Generalized

regret theory imposes only few rather general assumptions and thus has clearly less

structure than salience theory. In other words, while certain choice patterns are

in accordance (i.e., can be rationalized) with both generalized regret theory and

salience theory, their systematic occurrence is predicted only by salience theory.

According to Bleichrodt and Wakker (2015), the applied theoretical literature on

regret theory often relies on the more tractable specification of original regret theory

(cf. Definition 2 in Subsection 2.1) under which Ψ(x, y) = Q(c(x)−c(y)). This regret

theoretic preference representation has more structure and therefore more predictive

power (i.e., it is easier to falsify) than generalized regret theory. The purpose of

this section is to compare (generalized) salience theory with original regret theory.

In order to facilitate this comparison, we focus on salience representations with

continuous functions f(·), σ(·, ·), and v(·). The following result states the main

finding of this section.

Theorem 2. If the decision maker behaves according to generalized salience theory

with continuous functions f(·), σ(·, ·) and v(·), then the decision maker’s preference

ordering can also be represented as follows:

Lx � Ly ⇐⇒
S∑
s=1

πs Q(c(xs)− c(ys)) ≥ 0, (15)

where the function c : R→ R is strictly increasing and continuous and the function

Q : R→ R is strictly increasing, continuous and skew-symmetric.

Proof. See Appendix A.

The proof of Theorem 2 is based on the axiomatic foundation of original regret

theory provided by Diecidue and Somasundaram (2017).22 According to Theorem 1

in Diecidue and Somasundaram (2017), a preference ordering satisfies completeness,

strong monotonicity, continuity, d-transitivity, and trade-off consistency if and only

if it allows for a utility representation as in (15).23 Notably, the axiomatization in

Diecidue and Somasundaram (2017) does not yield the functionQ(·) to be necessarily

22The proof of Lemma 8 in Diecidue and Somasundaram (2017) contains a theoretical argument
how one can derive the functions c(·) and Q(·) from a function Ψ(·, ·), which can also be used
in theory to derive these functions from ΨST (·, ·). The described technique, however, does not
allow necessarily for obtaining a closed form solution.

23The axioms are all formally defined in the proof of Theorem 2. The axiom d-transitivity first
appeared in Stoye (2011) as transitive extension of monotonicity.
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strictly convex, such that, strictly spoken, Theorem 2 does not show salience theory

to be a special case of original regret theory as defined in Definition 2. However,

even if the function Q(·) identified by Theorem 1 in Diecidue and Somasundaram

(2017) should not be strictly convex in the sense of property (C′), it still satisfies

the less strict convexity requirement embodied by property (C). Therefore, in any

case, salience theory is closely related to original regret theory.

As we establish in the proof of Theorem 2, any salience specification with contin-

uous functions v(·), σ(·, ·), and f(·) satisfies the five axioms imposed by Diecidue

and Somasundaram (2017) and, thus, also d-transitivity. In order to formally de-

fine d-transitivity, we first define state-wise dominance �SD: prospect Lx state-wise

dominates prospect Ly, Lx �SD Ly, if xs ≥ ys for all s ∈ S and xs′ > ys′ for some

s′ ∈ S. Now, we can define d-transitivity as follows:

Definition 4 (d-transitivity). For all prospects Lx, Ly and Lz ∈ RS it holds that:

[Lx �SD Ly ∧ Ly � Lz] ⇒ Lx � Lz and [Lx � Ly ∧ Ly �SD Lz] ⇒ Lx � Lz.

Clearly, d-transitivity distinguishes the action-based approaches of original regret

theory and salience theory from EUT and most prospect-based non-EUT alterna-

tives.24 These latter theories assign to each prospect a real-valued utility level which

depends only on the prospect itself but not on the specification of the alternative

choice option(s). In consequence, EUT and most prospect-based theories necessarily

are required to satisfy “traditional” transitivity because the real numbers themselves

are transitive. In contrast, original regret theory and salience theory have to sat-

isfy “only” d-transitivity rather than transitivity as they make the evaluation of a

prospect contingent on the alternative choice option. Therefore, with violations of

transitivity being well-known (though, maybe, not fully understood) in the liter-

ature on choice under risk and uncertainty (Loomes, Starmer, and Sugden, 1991;

Starmer and Sugden, 1998), future experimental research that is interested in com-

paring prospect-based theories and action-based theories (such as regret theory or

salience theory) should try to validate/falsify d-transitivity.

Notably, just like the proof of Theorem 1, the proof of Theorem 2 makes use of

only one of the two key assumptions of salience theory, namely of ordering. Dimin-

ishing sensitivity is not needed. This observation raises the question whether we

can identify behavior which, due to diminishing sensitivity of the salience function,

is systematically predicted by salience theory but never systematically predicted

by original regret theory. As it turns out, the answer to this question is “No.” In

24EUT can be axiomatized based on completeness, monotonicity, continuity, and trade-off consis-
tency (Köbberling and Wakker, 2003).
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the following proposition, we establish the existence of specifications of generalized

salience theory that are identical to a specification of original regret theory.

Proposition 2. Suppose that the functions v(·) and f(·) are twice differentiable and

satisfy v(x) = −v(−x) for all x ∈ R, v′′(·) < 0 for all x ∈ R>0, v(·) < v̄ ∈ (0,∞)

and 2f ′(ξ) + f ′′(ξ)ξ > 0. If v(·) ≡ c(·), then the decision maker behaves according

to generalized salience theory with functions v(·), σ(x, y) = (|v(x)− v(y)|)/(2v̄) and

f(·) if and only if the decision maker behaves according to original regret theory with

functions c(·) and Q(∆) = f ((|∆|)/(2v̄)) ∆.

Proof. See Appendix A.

As can be seen from the proof of Proposition 2, it is the concavity of choiceless

utility (in the domain of positive outcomes) that ensures that the corresponding

salience function satisfies diminishing sensitivity. While many applications of orig-

inal regret theory assume a linear choiceless utility function, Loomes and Sugden

(1982, p.814) favor a concave function: “Our intuition is that c(·) is not linear but

concave.” Note, however, that global concavity of the choiceless utility function in

our construction can only be assumed once the reflection property is dropped.25

Taking diminishing sensitivity of the salience function as given, what kind of choice

behavior would be expected from a decision maker who adheres to salience theory?

To answer this question, consider two distinct prospects Lx and Ly between which

the decision maker is indifferent and where prospect Lx pays out a strictly higher

positive amount in state s than prospect Ly; i.e., Lx ∼ Ly and 0 ≤ ys < xs. A

uniform increase of xs and ys by the amount ε > 0 then makes Ly relatively more

attractive than Lx, at least as long as the value function is not overly convex over

the domain of gains.26 Hence, letting zsL
x ≡ (x1, . . . xs−1, z, xs+1, . . . , xS) denote the

prospect Lx with xs being replaced by z, we would this decision maker’s preference

relation expect to satisfy the following “axiom”:

Definition 5 (Diminishing marginal utility). For all prospects Lx, Ly ∈ RS and all

ε ∈ R>0 it holds that:

(DMU) Lx ∼ Ly ∧ 0 ≤ ys < xs for some s ∈ S ⇒ (xs + ε)sL
x ≺ (ys + ε)sL

y

Whether a decision maker adheres to axiom (DMU) can easily be tested exper-

imentally. If the decision maker’s preference ordering should be found to satisfy

25Curvature of the choiceless utility function c(·) is not needed under original regret theory in
order to capture the reflection effect (Bell, 1982; Loomes and Sugden, 1982).

26Clearly, the requirement of the value function v(·) being not too convex over the domain of gains
is satisfied by all standard specifications as well as by a (piece-wise) linear specification for
function v(·).
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axiom (DMU), this has a direct implication for the curvature of the choiceless utility

function c(·) in a original-regret-theoretic representation of the preference ordering.

Specifically, if the preference ordeing satisfies the five axioms listed in Theorem 1

of Diecidue and Somasundaram (2017) and, in addition, axiom (DMU), then the

preference ordering can be represented by original regret theory with a strictly con-

cave choiceless utility function.27 The implications of axiom (DMU) being found

valid for a salience-theoretic representation of the preference ordering are less clear,

because, based on choice data alone, it is impossible to disentangle the curvature of

the salience function from curvature of the value function.28

This section further emphasizes that salience theory and original regret theory are

closely related. Differences in predictions do not stem from fundamental differences

of the two theories, but rather from differences in the particular assumptions im-

posed on functional forms. Salience theory always imposes (DS), which, for typical

specifications of the value functions, implies that axiom (DMU) is satisfied. Ap-

plications of original regret theory, however, often opt for a linear choiceless utility

function, which does not satisfy axiom (DMU). Therefore, we believe it insightful

for future experimental work to test the importance of axiom (DMU).

5. Discussion

In their exposition of salience theory, Bordalo, Gennaioli, and Shleifer (2012) exten-

sively compare salience theory with prospect theory (Kahneman and Tversky, 1979;

Tversky and Kahneman, 1992), which they refer to as “the gold standard of behav-

ioral theories of choice under risk” (Bordalo, Gennaioli, and Shleifer, 2012, p.1245).

A comparison with regret theory, on the other hand, happens rather in the passing.

This focus on the match-up salience theory versus prospect theory, together with

the fact that much of the predictive power of both these theories is rooted in the

assumption of a distorted perception of probabilities, led to the proclamation of the

27To see this, note that Lx ∼ Ly and (xs+ε)sL
x ≺ (ys+ε)sL

y together imply Q(c(xs+ε)−c(ys+
ε)) < Q(c(xs) − c(ys)). With Q(·) being strictly increasing, the latter inequality is equivalent
to c(xs + ε)− c(ys + ε) < c(xs)− c(ys), which is satisfied for all xs, ys, and ε if and only if c(·)
strictly concave.

28Instead of testing (DMU), Bordalo, Gennaioli, and Shleifer (2012) experimentally and theoreti-
cally investigate how a shift in all payoffs affects risk attitudes. They consider a simple choice
situation with S = 2, a safe prospect LS = (x, x) and a risky prospect LR = (x+ 1−π

π l, x− l),
with l > 0 and x − l > 0. The probability of s = 1 is π ∈ (0, 1). Both prospects have the
same mean x, which is varied across the treatments. They report (weak) evidence that risk
seeking increases in x. This observation is in accordance with salience theory (and a linear
value function) but not with original regret theory with a linear choiceless utility function.
An increase of x, however, has opposing effects on the risk attitudes of a decision maker that
behaves according to salience theory. The observed pattern is predicted by salience theory only
if the salience function is convex. See Definition 3 and Lemma 1 of Bordalo, Gennaioli, and
Shleifer (2012). Note, diminishing sensitivity (or property DMU) does not allow for a clear
prediction in this choice situation.
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agenda to “stringently pit the predictions of the two theories against each other”

(Dhami, 2016, p.187). Before the backdrop of our analysis, we believe this “call to

arms” to be somewhat misguided—or, better put, misguiding—for several reasons.

First and foremost, by now, the predictions of prospect theory and regret the-

ory have been stringently put against each other for more than thirty years. In

consequence, with salience theory being a special case of regret theory, any re-

search project (whether theoretical or empirical in nature) with the aim to compare

prospect theory and salience theory should make sure that the question under con-

sideration has not yet been addressed under the label of regret theory. And even if

this is not be the case, it should be carefully explained to what extent the analysis

rests on aspects that are peculiar to the structure of salience theory or on aspects

that are shared by salience theory and regret theory.

Second, instead of narrowly focusing on the comparison of prospect theory and

salience theory, we believe it to be more insightful to take a step back and to re-

examine the comparison of the two classes of theories to which prospect theory

and salience theory belong to, respectively. Prospect theory belongs to the class of

prospect-based theories whereas salience theory belongs to the class of action-based

theories.29 Under prospect-based theories the evaluation of a given prospect is fully

determined by the properties of that particular prospect itself. Under action-based

theories, in contrast, the evaluation of a given prospect depends also on the available

alternative prospects. Specifically, an important determinant of a subject’s decision

between two prospects is how the outcomes of these prospects are juxtaposed, i.e.,

how a prospect’s outcome in a given state compares to the alternative prospect’s

outcome in that particular state. A series of experimental studies from the 1980s

confirmed the existence of significant juxtaposition effects, thereby providing support

for action-based rather than prospect-based theories (Loomes and Sugden, 1987b;

Loomes, 1988a,b; Starmer and Sugden, 1989). These predictions where challenged in

the 1990s by studies which found these juxtaposition effects to be highly susceptible

to the problem representation format (Battalio, Kagel, and Jiranyakul, 1990; Harless,

1992). Moreover, and more importantly, Starmer and Sugden (1993) and Humphrey

(1995) argue that the evidence which had been interpreted as supportive for the

occurrence of juxtaposition effects in fact may have been driven by event-splitting

effects, i.e., by a distorted processing of probabilities, where “an event with given

29The distinction between the class of prospect-based theories and the class of action-based theories
was introduced by Loomes and Sugden (1987b). Next to prospect theory, the former class
encompasses expected utility theory (von Neumann and Morgenstern, 1947), disappointment
theory (Loomes and Sugden, 1986; Bell, 1985), generalized expected utility theory (Machina,
1982), rank-order theory (Quiggin, 1982; Yaari, 1987), and expectation-based loss aversion
(Kőszegi and Rabin, 2007). Next to salience theory, the latter class encompasses regret theory
Loomes and Sugden (1982, 1987a) and skew-symmetric bilinear utility theory (Fishburn, 1982).
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probability and given consequences is weighted more heavily if it is considered as

two sub-events than if it is considered as a single event” (Starmer and Sugden, 1993,

p.236). Such event-splitting effects are neither predicted by regret theory nor by

salience theory but by classic prospect theory (Kahneman and Tversky, 1979).30 In

our perception, the debate between prospect-based and action-based theories has

not reached a decisive conclusion yet. Therefore, we see little value in testing one

particular prospect-based theory against one particular action-based theory.

Third, instead of solely focusing on the match-up prospect theory versus salience

theory, we consider it just as fruitful to dig deeper into the differences between

salience theory and regret theory. Salience theory imposes more assumptions than

generalized regret theory. Therefore, there must exist choice situations where the

former theory makes tighter predictions than the latter. Future theoretical work

might aim at identifying these choice situations, which then can be stringently tested

experimentally. Ultimately, however, an axiomatic approach seems most promising

to carve out the precise differences between the two theories. The development

of such an axiomatic foundation for salience theory may benefit from our findings

as we have shown that salience theory is both a special case of generalized regret

theory, which is axiomatized by Sugden (1993), and a special case of original regret

theory (without the convexity requirement), which is axiomatized by Diecidue and

Somasundaram (2017).

Finally, and related to the issue before, future experimental investigations may

want to aim at identifying the psychological channel that underlies decision under

risk. For example, under regret theory it is hypothesized that a decision maker’s ex

ante choice is affected by the fear of experiencing regret ex post. In consequence,

if regret theory (and regret aversion in particular) is a key determinant of decision

making under risk, then one might expect to observe a strictly positive ex ante

willingness to pay for avoiding information that would lead to ex post regret.31 Under

salience theory, the willingness to pay for avoiding this kind of information would be

expected to be zero. Under salience theory, on the other hand, it is hypothesized that

the decision maker ex ante overweighs the occurrence probability of salient events.

Hence, when moving from the realms of risk to the realms of uncertainty, one might

investigate whether payoff variation affects truly elicited beliefs about occurrence

probabilities according to the predictions of salience theory. Under regret aversion,

30In contrast to regret theory, salience theory works via probability distortions. In consequence,
we believe it to be easier to augment salience theory in a theory-coherent way to accommodate
event-splitting effects.

31First evidence that feedback on foregone risky alternatives enhances the salience of regret as
decision motive is provided by Larrick and Boles (1995) and Humphrey, Mann, and Starmer
(2005).
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such variation of payoffs should have no effect on the assessment of the probabilistic

environment.

6. Conclusion

In this paper we compare two non-EUT theories to model pairwise choice under

risk—regret theory (Loomes and Sugden, 1982, 1987a) and salience theory (Bor-

dalo, Gennaioli, and Shleifer, 2012). Bordalo, Gennaioli, and Shleifer (2012) offer

two approaches to model salience-induced distortions in the perception of proba-

bilities: rank-based salience theory, which favors analytical tractability in simple

choice problems, and smooth salience theory, which favors conceptual coherence.

To facilitate the exposition and the comparison of regret theory and salience the-

ory, we present a “generalized” version of salience theory that encompasses both

these approaches. Our key result shows that generalized salience theory is a spe-

cial case of generalized regret theory. This insight is particularly compelling for

the case of smooth salience theory. Here, for any specification of salience theory’s

salience function and value function, there exists a choice-problem-invariant speci-

fication of generalized regret theory that predicts identical behavior in any pairwise

choice problem. Under rank-based salience theory, on the other hand, the result-

ing regret representation typically is decision-problem specific, because rank-based

salience theory introduces a (rather subtle) dependence of the salience ranking on

the states of the world which is absent under smooth salience theory. However, for

choice problems that share the same non-probabilistic aspects (i.e., the same under-

lying state space and the same combination of outcomes in each state) the regret

representation resulting under rank-based salience theory is invariant to changes in

the probability distribution over the different states of the world. This has the im-

portant implication that regret theory and (both rank-based and smooth) salience

theory are effectively impossible to distinguish in the choice problems that consti-

tute the common consequence and common ratio Allais paradoxes. Overall, with

the qualitative predictions of smooth and the rank-based salience theory being the

same, we believe that our insights qualitatively apply to both formulations.

An obvious limitation of our analysis is the focus on pairwise choice. To some

extent, however, this limitation is inherited from regret theory and salience the-

ory themselves, both of which (at least in our reading) were proposed to explain

observations made primarily in pairwise choice situations. As pointedly stated by

Bleichrodt and Wakker (2015) “[a] limitation of regret theory, as of any intransitive

theory of binary choice, is that it is unclear how to extend the theory to choices

among three or more actions.” Regarding regret theory, Loomes and Sugden (1982)
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made some first suggestions, which were further formalized by Loomes and Sugden

(1987a) and axiomatized by Sugden (1993), for how regret or rejoicing experienced

from receiving the outcome of the chosen alternative in a given state might depend

on the outcomes of all rejected alternatives in that state. Quiggin (1994), on the

other hand, advocated for the imposition of the axiom of the irrelevance of state-

wise dominated alternatives, which implies that regret in a given state is determined

only by the maximum outcome across choice options in that particular state. And

yet another alternative approach is proposed by Hayashi (2008). Thus, even af-

ter more than thirty years, in our perception no clear consensus has emerged on

how to extend regret theory beyond pairwise choice. Salience theory, which still is

at a young age, so far has not moved beyond the proposal by Bordalo, Gennaioli,

and Shleifer (2012) that a state’s salience should depend on the comparison of the

outcome of the prospect which is to be evaluated in that state with some representa-

tive measure for the alternative prospects’ outcomes (e.g., the average outcome) in

that state. Before this backdrop, we consider an extension of our analysis to choice

among three or more prospects beyond the scope of this paper (if not even beyond

our grasp), as such an endeavor raises broader questions that most likely will not

have a theory-specific answer.

A. Appendix

Proof of Proposition 1. With regard to smooth salience theory, it is sufficient to note

that δ ∈ (0, 1) implies that f(σ) > 0 and f ′(σ) = −δ−σ ln(δ) > 0 for all σ. With

regard to rank-based salience theory, it is sufficient to note that k(σ|Γ) ∈ N>0 and

that kx(σ(xs, ys)|Γ) Q kx(σ(xs′ , ys′)|Γ) if and only if σ(xs, ys) R σ(xs′ , ys′) implies

f(σ(xs, ys)) R f(σ(xs′ , ys′)) if and only if σ(xs, ys) R σ(xs′ , ys′).

Proof of Theorem 2. We apply Theorem 1 of Diecidue and Somasundaram (2017).32

In the following, �SD denotes state-wise dominance: A prospect Lx state-wise dom-

inates prospect Ly, i.e., Lx �SD Ly, if xs ≥ ys for all s ∈ S and xs′ > ys′ for some

s′ ∈ S.33 Further, αsL
x denotes the prospect Lx with outcome xs replaced by α ∈ R.

Theorem 3 (Diecidue and Somasundaram, 2017). The following two statements

are equivalent:

1. The preference relation � can be represented with a strictly increasing con-

tinuous choiceless utility function c and a strictly increasing skew symmetric

32Theorem 1 of Diecidue and Somasundaram (2017) allows for subjective probabilities.
33Diecidue and Somasundaram (2017) refer to the �SD relation as strict dominance rather than

state-wise dominance.
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continuous regret function Q; i.e.

Lx � Ly ⇐⇒
S∑
s=1

πsQ(c(xs)− c(ys)) ≥ 0

2. The preference relation � satisfies:

(i) Completeness: For all Lx, Ly ∈ RS, either Lx � Ly or Lx � Ly.

(ii) Strong monotonicity: For all Lx, Ly ∈ RS, if xs ≥ ys for all s ∈ S and

xs′ > ys′ for a state s′ ∈ S, then Lx � Ly.

(iii) Continuity: For each Ly ∈ RS, the sets {Lx ∈ RS|Lx � Ly} and {Lx ∈
RS|Lx � Ly} are closed subsets of RS.

(iv) Trade-off consistency: For all Lx, Ly, Lz, Lw ∈ RS if [αsL
x ∼ βsL

y ∧
γsL

x ∼ δsL
y ∧ αs′L

z ∼ βs′L
w] =⇒ γs′L

z ∼ δs′L
w.

(v) d-transitivity: For all Lx, Ly, Lz ∈ RS, if [Lx �SD Ly ∧ Ly � Lz] =⇒
Lx � Lz and if [Lx � Ly ∧ Ly �SD Lz] =⇒ Lx � Lz.

According to Theorem 1 in Diecidue and Somasundaram (2017), in order to es-

tablish the result it is sufficient to show that a preference relation which allows for a

salience-theoretic representation satisfies (i) completeness, (ii) strong monotonicity,

(iii) continuity, (iv) trade-off consistency, and (v) d-transitivity. Hence, in all that

follows, we assume that the preference relation allows for a representation according

to Definition 3 and we denote ΨST (x, y) ≡ f(σ(x, y))[v(x)− v(y)]

(i) Completeness: For any prospects Lx ∈ RS and Ly ∈ RS, the choice between

the two prospects is governed by the function
∑S

s=1 πsΨ
ST (xs, ys). This function is

either > 0 or < 0 or = 0. Hence, Lx � Ly or Lx � Ly and the preference relation

satisfies completeness.

(ii) Strong monotonicity: For any prospects Lx ∈ RS and Ly ∈ RS, if xs ≥ ys

for all s ∈ S and xs′ > ys′ for some s′ ∈ S, then
∑S

s=1 πsΨ
ST (xs, ys) > 0, because

f(σ(xs, ys)) ≥ 0 and v(xs)− v(ys) ≥ 0 for all states and the inequalities are strict at

least for state s′. Hence, as
∑S

s=1 πsΨ
ST (xs, ys) > 0 implies Lx � Ly, the preference

relation satisfies strong monotonicity.

(iii) Continuity: For each prospect Ly ∈ RS, as the functions f(·), σ(·, ·), and v(·)
are continuous, the sets {Lx ∈ RS | Lx � Ly} and {Lx ∈ RS | Lx � Ly} are closed.

Thus, the preference relation satisfies continuity.

(iv) Trade-off consistency: Note that αsL
x ∼ βsL

y is equivalent to∑
r 6=s

πrΨ
ST (xr, yr) + πsΨ

ST (α, β) = 0, (A.16)
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and γsL
x ∼ δsL

y is equivalent to∑
r 6=s

πrΨ
ST (xr, yr) + πsΨ

ST (γ, δ) = 0, (A.17)

From (A.16) and (A.17) it follows that

ΨST (α, β) = ΨST (γ, δ). (A.18)

Moreover, αs′L
z ∼ βs′L

w is equivalent to∑
r 6=s′

πrΨ
ST (zr, wr) + πs′Ψ

ST (α, β) = 0. (A.19)

By (A.18) and (A.19) it holds that∑
r 6=s′

πrΨ
ST (zr, wr) + πs′Ψ

ST (γ, δ) = 0. (A.20)

As (A.20) implies γs′L
z ∼ δs′L

w, the preference relation satisfies trade-off consis-

tency.

(v) d-transitivity: Let Lx �SD Ly and Ly � Lz. Ly � Lz is equivalent to

S∑
s=1

πsΨ
ST (ys, zs) ≥ 0. (A.21)

As xs ≥ ys for all s ∈ S by Lx �SD Ly, the three sets S1 = {s ∈ S | ys ≥ zs},
S2 = {s ∈ S | xs ≥ zs > ys}, and S3 = {s ∈ S | zs > xs} partition the state

space; i.e., the three sets are disjoint and S1 ∪ S2 ∪ S3 = S. By σ(·, ·) satisfying

(O), it follows that σ(xs, zs) ≥ σ(ys, zs) if s ∈ S1 and σ(xs, zs) ≤ σ(ys, zs) if s ∈ S3.

Further, with xs ≥ ys for all s ∈ S and v(·) being strictly increasing, we have

0 ≤ v(ys) − v(zs) ≤ v(xs) − v(zs) if s ∈ S1, v(ys) − v(zs) < 0 ≤ v(xs) − v(zs) if

s ∈ S2, and v(ys)− v(zs) ≤ v(xs)− v(zs) < 0 if s ∈ S3. Together these observations

imply that ∑
s∈S1

πsΨ
ST (xs, zs) ≥

∑
s∈S1

πsΨ
ST (ys, zs) (A.22)

and
∑
s∈S2

πsΨ
ST (xs, zs) >

∑
s∈S2

πsΨ
ST (ys, zs) (A.23)

and
∑
s∈S3

πsΨ
ST (xs, zs) ≥

∑
s∈S3

πsΨ
ST (ys, zs). (A.24)

If S2 = ∅, then s′ ∈ S1 or s′ ∈ S3, in which case the inequality in either (A.22)

or (A.24) is strict because xs′ > ys′ implies ΨST (xs′ , zs′) > ΨST (ys′ , zs′). Together

(A.22), (A.23), and (A.24) thus imply∑
s∈S

πsΨ
ST (xs, zs) >

∑
s∈S

πsΨ
ST (ys, zs), (A.25)
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which, in turn, together with (A.21) implies∑
s∈S

πsΨ
ST (xs, zs) > 0. (A.26)

Thus, Lx � Lz.

Analogously it can be shown that [Lx � Ly ∧ Ly �SD Lz] ⇒ Lx � Lz. Hence,

the preference relation satisfies d-transitivity.

Proof of Proposition 2. To prove the statement, we proceed in two steps. In Step 1,

we show that the function σ(·, ·) satisfies the properties (S), (MS), (O), (DS), and

(R). In Step 2, we show that the function Q(·) satisfies the properties (SS), (I), and

(C).

Step 1: As the function σ(·, ·) obviously satisfies the properties (S), (MS), and

(O), a formal proof is omitted. Property (DS) follows from the assumption of v(·)
being strictly concave over the domain of positive outcomes. Formally, for x > y > 0

and ε ≥ 0,

d

dε
{v(x+ ε)− v(y + ε)} = v′(x+ ε)− v′(y + ε) < 0, (A.27)

where the strict inequality holds by v′′(x) < 0 for x > 0. As (A.27) implies σ(x +

ε, y + ε) < σ(x, y) for all ε > 0, property (DS) is satisfied. Property (R) clearly

follows from the assumption that v(x) = −v(−x). In fact, this assumption implies

a strong form of reflection, σ(xs, ys) = σ(−xs,−ys) for xs, ys > 0.

Step 2: As the function

Q(∆) = f(|∆|)∆ =

f(∆) ∆ for ∆ ≥ 0

f(−∆) ∆ for ∆ < 0
(A.28)

clearly satisfies (SS) and (I), a formal proof is omitted. Furthermore, for ∆ > 0 we

have Q′′(∆) = 2f ′(∆)+∆f ′′(∆) > 0, such that property (C) is satisfied. Continuity

of Q(·) follows from continuity of f(·), σ(·, ·), and v(·).
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